Specht property of varieties of graded Lie algebras

被引:2
作者
Correa, Daniela Martinez [1 ]
Koshlukov, Plamen [1 ]
机构
[1] Univ Estadual Campinas, Dept Math, 651 Sergio Buarque de Holanda, BR-13083859 Campinas, SP, Brazil
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 202卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
Upper triangular matrices; Graded polynomial identities; Finite basis of identities; Specht problem; Graded Lie algebras; POLYNOMIAL-IDENTITIES; JORDAN ALGEBRA; MATRICES; FIELD;
D O I
10.1007/s00605-023-01840-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let UTn( F) be the algebra of the nxn upper triangular matrices and denote UTn(F)((-)) the Lie algebra on the vector space of UTn(F) with respect to the usual bracket (commutator), over an infinite field F. In this paper, we give a positive answer to the Specht property for the ideal of the Z(n)-graded identities of UTn(F)((-)) with the canonical grading when the characteristic p of F is 0 or is larger than n- 1. Namely we prove that every ideal of graded identities in the free graded Lie algebra that contains the graded identities of UTn(F)((-)), is finitely based. Moreover we show that if F is an infinite field of characteristic p = 2 then the Z(3)-graded identities of UT3(-)(F) do not satisfy the Specht property. More precisely, we construct explicitly an ideal of graded identities containing that of UT3(-)(F), and which is not finitely generated as an ideal of graded identities.
引用
收藏
页码:65 / 92
页数:28
相关论文
共 36 条
  • [1] Representability and Specht problem for G-graded algebras
    Aljadeff, Eli
    Kanel-Belov, Alexei
    [J]. ADVANCES IN MATHEMATICS, 2010, 225 (05) : 2391 - 2428
  • [2] Bakhturin Y.A., 1975, MAT SB, V96, P507, DOI 10.1070/SM1975v025n04ABEH002459
  • [3] Counterexamples to the Specht problem
    Belov, AY
    [J]. SBORNIK MATHEMATICS, 2000, 191 (3-4) : 329 - 340
  • [4] Specht property for some varieties of Jordan algebras of almost polynomial growth
    Centrone, Lucio
    Martino, Fabrizio
    Souza, Manuela da Silva
    [J]. JOURNAL OF ALGEBRA, 2019, 521 : 137 - 165
  • [5] A note on cocharacter sequence of Jordan upper triangular matrix algebra
    Centrone, Lucio
    Martino, Fabrizio
    [J]. COMMUNICATIONS IN ALGEBRA, 2017, 45 (04) : 1687 - 1695
  • [6] Drensky V.S., 1974, Algebra Log., V13, P150, DOI 10.1007/BF01463349
  • [7] Z-graded identities of the Lie algebras U1 in characteristic 2
    Fidelis, Claudemir
    Koshlukov, Plamen
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2023, 174 (01) : 49 - 58
  • [8] Z-graded identities of the Lie algebra W1
    Freitas, Jose A.
    Koshlukov, Plamen
    Krasilnikov, Alexei
    [J]. JOURNAL OF ALGEBRA, 2015, 427 : 226 - 251
  • [9] Graded polynomial identities and Specht property of the Lie algebra sl2
    Giambruno, Antonio
    Souza, Manuela da Silva
    [J]. JOURNAL OF ALGEBRA, 2013, 389 : 6 - 22
  • [10] Grishin AV., 1999, FUNDAM PRIKL MAT, V5, P101