Multi-scale Prototypical Transformer forWhole Slide Image Classification

被引:10
作者
Ding, Saisai [1 ]
Wang, Jun [1 ]
Li, Juncheng [1 ]
Shi, Jun [1 ]
机构
[1] Shanghai Univ, Sch Commun & Informat Engn, Shanghai, Peoples R China
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VI | 2023年 / 14225卷
基金
中国国家自然科学基金;
关键词
Whole slide image; Multiple instance learning; Multi-scale feature; Prototypical Transformer;
D O I
10.1007/978-3-031-43987-2_58
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Whole slide image (WSI) classification is an essential task in computational pathology. Despite the recent advances in multiple instance learning (MIL) for WSI classification, accurate classification of WSIs remains challenging due to the extreme imbalance between the positive and negative instances in bags, and the complicated pre-processing to fuse multi-scale information ofWSI. To this end, we propose a novel multi-scale prototypical Transformer (MSPT) for WSI classification, which includes a prototypical Transformer (PT) module and a multi-scale feature fusion module (MFFM). The PT is developed to reduce redundant instances in bags by integrating prototypical learning into the Transformer architecture. It substitutes all instances with cluster prototypes, which are then re-calibrated through the self-attention mechanism of Transformer. Thereafter, an MFFM is proposed to fuse the clustered prototypes of different scales, which employs MLP-Mixer to enhance the information communication between prototypes. The experimental results on two public WSI datasets demonstrate that the pro-posed MSPT outperforms all the compared algorithms, suggesting its potential applications.
引用
收藏
页码:602 / 611
页数:10
相关论文
共 24 条
[1]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[2]   Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology [J].
Bera, Kaustav ;
Schalper, Kurt A. ;
Rimm, David L. ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) :703-715
[3]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[4]   Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning [J].
Chen, Richard J. ;
Chen, Chengkuan ;
Li, Yicong ;
Chen, Tiffany Y. ;
Trister, Andrew D. ;
Krishnan, Rahul G. ;
Mahmood, Faisal .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :16123-16134
[5]  
Chen T, 2020, PR MACH LEARN RES, V119
[6]  
Dosovitskiy A., 2021, ICLR
[7]   Multi-scale Domain-adversarial Multiple-instance CNN for Cancer Subtype Classification with Unannotated Histopathological Images [J].
Hashimoto, Noriaki ;
Fukushima, Daisuke ;
Koga, Ryoichi ;
Takagi, Yusuke ;
Ko, Kaho ;
Kohno, Kei ;
Nakaguro, Masato ;
Nakamura, Shigeo ;
Hontani, Hidekata ;
Takeuchi, Ichiro .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :3851-3860
[8]  
Hendrycks D, 2020, Arxiv, DOI arXiv:1606.08415
[9]  
Hou WT, 2022, AAAI CONF ARTIF INTE, P933
[10]   Integration of Patch Features Through Self-supervised Learning and Transformer for Survival Analysis on Whole Slide Images [J].
Huang, Ziwang ;
Chai, Hua ;
Wang, Ruoqi ;
Wang, Haitao ;
Yang, Yuedong ;
Wu, Hejun .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT VIII, 2021, 12908 :561-570