Room-Temperature Synthesis of Carbon-Nanotube-Interconnected Amorphous NiFe-Layered Double Hydroxides for Boosting Oxygen Evolution Reaction

被引:6
|
作者
Chen, Zhuo [1 ]
Qu, Qiang [1 ]
Li, Xinsheng [2 ]
Srinivas, Katam [2 ]
Chen, Yuanfu [2 ]
Zhu, Mingqiang [1 ]
机构
[1] Northwest A&F Univ, Coll Mech & Elect Engn, Yangling 712100, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Integrated Circuit Sci & Engn, State Key Lab Elect Thin Films & Integrated Device, Chengdu 610054, Peoples R China
来源
MOLECULES | 2023年 / 28卷 / 21期
基金
中国国家自然科学基金;
关键词
room-temperature synthesis; layered double hydroxides; carbon nanotubes; NiFe-LDH@CNT; oxygen evolution reaction; WATER; ELECTROCATALYST; CHALLENGES; NANOSHEETS; HYDROGEN;
D O I
10.3390/molecules28217289
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The oxygen evolution reaction (OER) is a key half-reaction in electrocatalytic water splitting. Large-scale water electrolysis is hampered by commercial noble-metal-based OER electrocatalysts owing to their high cost. To address these issues, we present a facile, one-pot, room-temperature co-precipitation approach to quickly synthesize carbon-nanotube-interconnected amorphous NiFe-layered double hydroxides (NiFe-LDH@CNT) as cost-effective, efficient, and stable OER electrocatalysts. The hybrid catalyst NiFe-LDH@CNT delivered outstanding OER activity with a low onset overpotential of 255 mV and a small Tafel slope of 51.36 mV dec-1, as well as outstanding long-term stability. The high catalytic capability of NiFe-LDH@CNT is associated with the synergistic effects of its room-temperature synthesized amorphous structure, bi-metallic modulation, and conductive CNT skeleton. The room-temperature synthesis can not only offer economic feasibility, but can also allow amorphous NiFe-LDH to be obtained without crystalline boundaries, facilitating long-term stability during the OER process. The bi-metallic nature of NiFe-LDH guarantees a modified electronic structure, providing additional catalytic sites. Simultaneously, the highly conductive CNT network fosters a nanoporous structure, facilitating electron transfer and O2 release and enriching catalytic sites. This study introduces an innovative approach to purposefully design nanoarchitecture and easily synthesize amorphous transition-metal-based OER catalysts, ensuring their cost effectiveness, production efficiency, and long-term stability.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Amorphous NiFe-layered double hydroxides nanosheets for oxygen evolution reaction
    Liu, Jiang
    Zhou, Jia
    Liu, Shuang
    Chen, Gui
    Wu, Wei
    Li, Ying
    Jin, Pujun
    Xu, Chunli
    ELECTROCHIMICA ACTA, 2020, 356
  • [2] Facile synthesis of thin NiFe-layered double hydroxides nanosheets efficient for oxygen evolution
    Yan, Kai
    Lafleur, Todd
    Chai, Jiajue
    Jarvis, Cody
    ELECTROCHEMISTRY COMMUNICATIONS, 2016, 62 : 24 - 28
  • [3] Construction of NiFe-Layered Double Hydroxides Arrays as Robust Electrocatalyst for Oxygen Evolution Reaction
    Liu, Qiyu
    Wang, Yi
    Lu, Xihong
    CATALYSTS, 2023, 13 (03)
  • [4] Atomic Cation-Vacancy Engineering of NiFe-Layered Double Hydroxides for Improved Activity and Stability towards the Oxygen Evolution Reaction
    Peng, Lishan
    Yang, Na
    Yang, Yuqi
    Wang, Qing
    Xie, Xiaoying
    Sun-Waterhouse, Dongxiao
    Shang, Lu
    Zhang, Tierui
    Waterhouse, Geoffrey I. N.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (46) : 24612 - 24619
  • [5] Carbon nanotubes supported Cs-doped NiFe-layered double hydroxide nanosheets as efficient catalyst for oxygen evolution reaction
    Li, Xinsheng
    Srinivas, Katam
    Ramadoss, Manigandan
    Ma, Fei
    Wang, Yue
    Wang, Mengya
    Yu, Hesheng
    Zhang, Ziheng
    Wu, Yu
    Chen, Yuanfu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 303 - 313
  • [6] NiFe Layered Double Hydroxides for Oxygen Evolution Reaction
    Du, Yu
    Liu, Depei
    Yan, Shicheng
    Yu, Tao
    Zou, Zhigang
    PROGRESS IN CHEMISTRY, 2020, 32 (09) : 1386 - 1401
  • [7] Template synthesis of molybdenum-doped NiFe-layered double hydroxide nanotube as high efficiency electrocatalyst for oxygen evolution reaction
    Yin, Zehao
    Liu, Xuan
    Cui, Ming
    Cao, Zhenyu
    Liu, Anmin
    Gao, Liguo
    Ma, Tingli
    Chen, Siru
    Li, Yanqiang
    MATERIALS TODAY SUSTAINABILITY, 2022, 17
  • [8] Ultrafast Room-Temperature Synthesis of Self-Supported NiFe-Layered Double Hydroxide as Large-Current-Density Oxygen Evolution Electrocatalyst
    Li, Xiaoge
    Liu, Cong
    Fang, Zhitang
    Xu, Lin
    Lu, Chunliang
    Hou, Wenhua
    SMALL, 2022, 18 (02)
  • [9] Tuning the oxygen evolution electrocatalysis on NiFe-layered double hydroxides via sulfur doping
    Li, Shenzhou
    Liu, Jianyun
    Duan, Shuo
    Wang, Tanyuan
    Li, Qing
    CHINESE JOURNAL OF CATALYSIS, 2020, 41 (05) : 847 - 852
  • [10] Oxygen Vacancies Unfold the Catalytic Potential of NiFe-Layered Double Hydroxides by Promoting Their Electronic Transport for Oxygen Evolution Reaction
    Zhang, Haoyue
    Wu, Lingling
    Feng, Ruohan
    Wang, Sihong
    Hsu, Chia-Shuo
    Ni, Yuanman
    Ahmad, Ashfaq
    Zhang, Chaoran
    Wu, Haofei
    Chen, Hao-Ming
    Zhang, Wang
    Li, Yao
    Liu, Pan
    Song, Fang
    ACS CATALYSIS, 2023, 13 (09) : 6000 - 6012