Geometric triangulations and the Teichmüller TQFT volume conjecture for twist knots

被引:0
作者
Ben Aribi, Fathi [1 ]
Gueritaud, Francois [2 ,3 ]
Piguet-Nakazawa, Eiichi [4 ]
机构
[1] UCLouvain, IRMP, Chemin Cyclotron 2, B-1348 Louvain La Neuve, Belgium
[2] Univ Strasbourg, CNRS, UMR 7501, 7 Rue Rene Descartes, F-67000 Strasbourg, France
[3] Univ Strasbourg, IRMA, UMR 7501, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[4] Univ Geneva, Sect Math, 2-4 Rue Lievre,Case Postale 64, CH-1211 Geneva 4, Switzerland
基金
瑞士国家科学基金会;
关键词
Triangulations; twist knots; 3-manifolds; hyperbolic volume; Teichmuller TQFT; volume conjecture; saddle point method; INVARIANTS; 3-MANIFOLDS; POLYNOMIALS; TURAEV; LINKS;
D O I
10.4171/QT/178
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a new infinite family of ideal triangulations and H-triangulations for the complements of twist knots, using a method originating from Thurston. These triangulations provide a new upper bound for the Matveev complexity of twist knot complements. We then prove that these ideal triangulations are geometric. The proof uses techniques of Futer and the second author, which consist in studying the volume functional on the polyhedron of angle structures. Finally, we use these triangulations to compute explicitly the partition function of the Teichmuller TQFT and to prove the associated volume conjecture for all twist knots, using the saddle point method.
引用
收藏
页码:285 / 406
页数:122
相关论文
共 54 条
  • [1] Burton BA, 2014, Arxiv, DOI arXiv:1405.2695
  • [2] Andersen J. E., 2018, P INT C MATHEMATICIA, VII, P2527
  • [3] Andersen J. E., 2017, Trav. Math., V25, P41
  • [4] Asymptotics of the quantum invariants for surgeries on the figure 8 knot
    Andersen, JE
    Hansen, SK
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2006, 15 (04) : 479 - 548
  • [5] Andersen JE, 2024, Arxiv, DOI arXiv:1711.11522
  • [6] A TQFT from Quantum Teichmuller Theory
    Andersen, Jorgen Ellegaard
    Kashaev, Rinat
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 330 (03) : 887 - 934
  • [7] Andersen JE, 2013, Arxiv, DOI arXiv:1305.4291
  • [8] ATIYAH M, 1988, PUBL MATH-PARIS, P175
  • [9] Quantum hyperbolic invariants of 3-manifolds with PSL(2, C)-characters
    Baseilhac, S
    Benedetti, R
    [J]. TOPOLOGY, 2004, 43 (06) : 1373 - 1423
  • [10] Ben Aribi F, 2022, Arxiv, DOI arXiv:1903.09480