A review on the Representative Volume Element-based multi-scale simulation of 3D woven high performance thermoset composites manufactured using resin transfer molding process

被引:22
作者
Trofimov, Anton [1 ]
Ravey, Christophe [2 ]
Droz, Nicolas [3 ]
Therriault, Daniel [1 ]
Levesque, Martin [1 ]
机构
[1] Polytech Montreal, Lab Multiscale Mech, Montreal, PQ H3C 3A7, Canada
[2] Safran Compos Technol Platform Safran Tech, F-91760 Itteville, France
[3] Safran Aircraft Engines, Rond Point Rene Ravaud, F-77550 Moissy Cramayel, France
基金
加拿大自然科学与工程研究理事会;
关键词
Multi-scale modeling; Process optimization; Homogenization; 3D woven composite; Resin transfer molding; INDUCED RESIDUAL-STRESSES; ELASTIC PROPERTIES; PERMEABILITY CHARACTERIZATION; MULTIOBJECTIVE OPTIMIZATION; MECHANICAL-PROPERTIES; TEXTILE COMPOSITES; VENT LOCATIONS; NUMERICAL-SIMULATION; MOLECULAR-DYNAMICS; PROCESS DESIGN;
D O I
10.1016/j.compositesa.2023.107499
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This review shows the potential of using the Representative Volume Element concept for the multi-scale simulation of 3D woven high performance thermoset composites manufactured using the Resin Transfer Molding (RTM) process. Based on the reviewed state of art, this work unleashes the 5 most promising areas for future research that could advance the RTM process optimization. Area 1: Developing polymer constitutive models databases that rely on the experimental data at all ranges of degrees of cure and temperatures involved in the RTM process. Area 2: Verifying the accuracy of simulation tools on complex parts made of different preform types. Area 3: Increasing computational efficiency of degree of cure-and temperature-dependent viscoelastic constitutive models accounting for the stress relaxation. Area 4: Increasing computational efficiency of the multi-scale homogenization procedure. Area 5: Standardizing experimental measurements during different phases of the RTM process.
引用
收藏
页数:17
相关论文
共 171 条
[1]   Material characterization and residual stresses simulation during the manufacturing process of epoxy matrix composites [J].
Abou Msallem, Y. ;
Jacquemin, F. ;
Boyard, N. ;
Poitou, A. ;
Delaunay, D. ;
Chatel, S. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2010, 41 (01) :108-115
[2]   Verification of the capability for quantitative stress prediction during epoxy cure [J].
Adolf, D ;
Chambers, R .
POLYMER, 1997, 38 (21) :5481-5490
[3]   Characterization of 3D woven reinforcements for liquid composite molding processes [J].
Alhussein, H. ;
Umer, R. ;
Rao, S. ;
Swery, E. ;
Bickerton, S. ;
Cantwell, W. J. .
JOURNAL OF MATERIALS SCIENCE, 2016, 51 (06) :3277-3288
[4]   XCT-scan assisted flow path analysis and permeability prediction of a 3D woven fabric [J].
Ali, M. A. ;
Umer, R. ;
Khan, K. A. ;
Cantwell, W. J. .
COMPOSITES PART B-ENGINEERING, 2019, 176
[5]   In-plane virtual permeability characterization of 3D woven fabrics using a hybrid experimental and numerical approach [J].
Ali, M. A. ;
Umer, R. ;
Khan, K. A. ;
Cantwell, W. J. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2019, 173 :99-109
[6]   Non-destructive evaluation of through-thickness permeability in 3D woven fabrics for composite fan blade applications [J].
Ali, M. A. ;
Umer, R. ;
Khan, K. A. ;
Bickerton, S. ;
Cantwell, W. J. .
AEROSPACE SCIENCE AND TECHNOLOGY, 2018, 82-83 :520-533
[7]   Deep learning based semantic segmentation of μCT images for creating digital material twins of fibrous reinforcements [J].
Ali, Muhammad A. ;
Guan, Qiangshun ;
Umer, Rehan ;
Cantwell, Wesley J. ;
Zhang, TieJun .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2020, 139
[8]  
Allaire G., 1989, Asymptot. Anal, V2, P203
[9]   A penalization method to take into account obstacles in incompressible viscous flows [J].
Angot, P ;
Bruneau, CH ;
Fabrie, P .
NUMERISCHE MATHEMATIK, 1999, 81 (04) :497-520
[10]  
Angot P, 1999, MATH METHOD APPL SCI, V22, P1395, DOI 10.1002/(SICI)1099-1476(19991110)22:16<1395::AID-MMA84>3.0.CO