Gene therapy for cross-correction of somatic organs and the CNS in mucopolysaccharidosis II in rodents and non-human primates

被引:5
|
作者
Chen, Nancy [1 ]
Ehmann, David E. [1 ,2 ]
Crooker, Robert [1 ]
Derakhchan, Katayoun [1 ]
Fang, Xiaodong [1 ,3 ]
Felice, Brian [1 ]
Galbreath, Elizabeth J. [1 ]
Glaus, Charles [1 ,4 ]
Gu, Hongbo [1 ,5 ]
Huang, Yan [1 ,6 ]
Li, Christine [1 ]
Li, Xing [1 ,7 ]
Liu, Nan [1 ]
Palmieri, Kathleen [1 ]
Simic, Damir [1 ,8 ]
Sypek, Joseph [1 ]
Thompson, Susan [1 ]
Winkelmann, Christopher T. [1 ]
Choi, Vivian W. [1 ]
机构
[1] Takeda Dev Ctr Amer Inc, Cambridge, MA 02139 USA
[2] Pretzel Therapeut, Waltham, MA USA
[3] Asklepios BioPharmaceut AskBio, Res Triangle Pk, NC USA
[4] Bayer HealthCare Pharmaceut, Cambridge, MA USA
[5] PTM Bio LLC, Hangzhou, Zhejiang, Peoples R China
[6] Editas Med, Cambridge, MA USA
[7] Ultragenyx, Cambridge, MA USA
[8] Astellas Gene Therapies, San Francisco, CA USA
关键词
ENZYME-REPLACEMENT THERAPY; HUNTER-SYNDROME; IDURSULFASE; EXPRESSION; MODEL; MICE;
D O I
10.1016/j.omtm.2023.03.014
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Mucopolysaccharidosis II (MPS II) is a rare lysosomal storage disease characterized by deficient activity of iduronate-2-sulfatase (I2S), leading to pathological accumulation of glycosaminoglycans (GAGs) in tissues. We used iduronate-2-sulfatase knockout (Ids KO) mice to investigate if liver-directed recomcoding human I2S (hI2S) could cross-correct I2S deficiency in Ids KO mouse tissues, and we then assessed the translation of mouse data to non-human primates (NHPs). Treated mice showed sustained hepatic hI2S production, accompanied by normalized GAG levels in somatic tissues (including critical tissues such as heart and lung), indicating systemic cross-correction from liver-secreted hI2S. Brain GAG levels in Ids KO mice were lowered but not normalized; higher doses were required to see improvements in brain histology and neurobehavioral testing. rAAV8-LSP-hIDSco administration in NHPs resulted in sustained hepatic hI2S production and therapeutic hI2S levels in cross-corrected somatic tissues but no hI2S exposure in the central nervous system, perhaps owing to lower levels of liver transduction in NHPs than in mice. Overall, we demonstrate the ability of rAAV8-LSP-hIDSco to cross-correct I2S deficiency in mouse somatic tissues and highlight the importance of showing translatability of gene therapy data from roclinical development.
引用
收藏
页码:286 / 302
页数:17
相关论文
共 50 条
  • [31] Durable CYP21A2 gene therapy in non-human primates for treatment of congenital adrenal hyperplasia
    Eclov, R. J.
    Lewis, T. E. W.
    Kapandia, M.
    Scott, D. W.
    Rouse, J. L.
    Romero, K. B.
    Mansfield, G.
    Beard, C. W.
    HUMAN GENE THERAPY, 2019, 30 (11) : A146 - A146
  • [32] Efficacy and Safety of Liver-Directed Lentiviral Gene Therapy in Hemophilia B Dogs and Non-Human Primates
    Cantore, Alessio
    Milani, Michela
    Annoni, Andrea
    Liu, Tongyao
    Deschamps, Jack-Yves
    Ayuso, Eduard
    Nichols, Timothy
    Peters, Robert
    Naldini, Luigi
    MOLECULAR THERAPY, 2017, 25 (05) : 30 - 31
  • [33] Erratum: Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates
    S J Gray
    S Nagabhushan Kalburgi
    T J McCown
    R Jude Samulski
    Gene Therapy, 2013, 20 (4) : 465 - 465
  • [34] Author Correction: Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates
    Joshua C. Doloff
    Omid Veiseh
    Arturo J. Vegas
    Hok Hei Tam
    Shady Farah
    Minglin Ma
    Jie Li
    Andrew Bader
    Alan Chiu
    Atieh Sadraei
    Stephanie Aresta-Dasilva
    Marissa Griffin
    Siddharth Jhunjhunwala
    Matthew Webber
    Sean Siebert
    Katherine Tang
    Michael Chen
    Erin Langan
    Nimit Dholakia
    Raj Thakrar
    Meirigeng Qi
    Jose Oberholzer
    Dale L. Greiner
    Robert Langer
    Daniel G. Anderson
    Nature Materials, 2021, 20 : 1038 - 1038
  • [35] Liver-Targeted Lentiviral Gene Therapy Achieves 100% of Normal Circulating FVIII Levels in Non-Human Primates
    Liu, Tongyao
    Cantore, Alessio
    Patarroyo-White, Sue
    Milani, Michela
    Biffi, Mauro
    Moffit, Jeff
    Drager, Douglas
    Naldini, Luigi
    Peters, Rob
    MOLECULAR THERAPY, 2019, 27 (04) : 307 - 307
  • [36] SEXUAL DIMORPHISMS IN PLACENTAL RESPONSE TO NANOPARTICLE-MEDIATED GENE THERAPY TREATMENT IN GUINEA PIGS, AND NON-HUMAN PRIMATES
    Wilson, Rebecca
    PLACENTA, 2023, 140 : E16 - E16
  • [37] Adenovirus-mediated gene therapy for mucopolysaccharidosis VII: Involvement of cross-correction in wide-spread distribution of the gene products and long-term effects of CTLA-4lg coexpression
    Kosuga, M
    Takahashi, S
    Sasaki, K
    Li, XK
    Fujino, M
    Hamada, H
    Suzuki, S
    Yamada, M
    Matsuo, N
    Okuyama, T
    MOLECULAR THERAPY, 2000, 1 (05) : 406 - 413
  • [38] Gene therapy: Selective hepatic arterial delivery and gene transfer of E1-deleted recombinant adenoviruses into non-human primates
    Haskal, ZJ
    Raper, SE
    Ye, X
    Wilson, J
    RADIOLOGY, 1997, 205 : 1026 - 1026
  • [39] Anc80L65 results in more widespread gene transfer in the CNS of non-human primates compared to AAV9
    Stanek, L. M.
    Calcedo, R.
    Mastis, B.
    Sanders, D.
    May, R.
    Lewis, L.
    Edwards, M.
    Tipper, C.
    Craig, S.
    Grover, D.
    Wang, H.
    Te, L.
    Vandenberghe, L. H.
    Richman, L. K.
    HUMAN GENE THERAPY, 2021, 32 (19-20) : A46 - A46
  • [40] Preclinical studies of lentivirus-mediated ex vivo gene therapy in non-human primates:: An approach for the treatment of familial hypercholesterolemia
    Lainas, Panagiotis
    Dagher, Ibrahim
    Nguyen, Tuan Huy
    Picard, Marie-Therese
    Mainot, Sylvie
    Ginouves, Marine
    Leboulch, Philippe
    Pariente, Daniele
    Franco, Dominique
    Weber, Anne
    HUMAN GENE THERAPY, 2007, 18 (10) : 1073 - 1073