Restriction estimates in a conical singular space: Schrodinger equation

被引:0
作者
Chen, Jingdan [2 ]
Gao, Xiaofen [1 ]
Xu, Chengbin [3 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[3] Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
关键词
Adjoint restriction estimates; conical singular space; Schrodinger equation; OSCILLATORY INTEGRALS; WAVE-EQUATION; HEAT KERNEL; OPERATORS; THEOREMS; CONE; MANIFOLDS;
D O I
10.1515/forum-2023-0066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper continues our previous program to study the restriction estimates in a class of conical singular spaces X = C( Y) = ( 0, infinity)(r) x Y equipped with the metric g = dr(2) + r(2)h, where the cross section Y is a compact ( n - 1)- dimensional closed Riemannian manifold ( Y, h). Assuming the initial data possesses additional regularity in the angular variable theta is an element of Y, we prove some linear restriction estimates for the solutions of Schrodinger equations on the cone X. The smallest positive eigenvalue of the operator Delta(h) + V-0 + ( n - 2)(2)/ 4 plays an important role in the result. As applications, we prove local energy estimates and Keel-Smith-Sogge estimates for the Schrodinger equation in this setting.
引用
收藏
页码:1707 / 1725
页数:19
相关论文
共 35 条
[1]  
[Anonymous], 1996, Texts in Applied Mathematics
[2]   Strichartz Estimates for the Wave Equation on Flat Cones [J].
Blair, Matthew D. ;
Ford, G. Austin ;
Marzuola, Jeremy L. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (03) :562-591
[3]   BOUNDS ON OSCILLATORY INTEGRAL OPERATORS BASED ON MULTILINEAR ESTIMATES [J].
Bourgain, Jean ;
Guth, Larry .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2011, 21 (06) :1239-1295
[4]   Strichartz estimates for the wave and Schrodinger equations with the inverse-square potential [J].
Burq, N ;
Planchon, F ;
Stalker, JG ;
Tahvildar-Zadeh, AS .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 203 (02) :519-549
[5]   ON THE DIFFRACTION OF WAVES BY CONICAL SINGULARITIES .2. [J].
CHEEGER, J ;
TAYLOR, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (04) :487-529
[6]  
Demeter C, 2020, CAM ST AD M, V184, P1, DOI 10.1017/9781108584401
[7]   Restriction Estimates in a Conical Singular Space: Wave Equation [J].
Gao, Xiaofen ;
Zhang, Junyong ;
Zheng, Jiqiang .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (03)
[8]  
Grafakos L, 2008, GRAD TEXTS MATH, V249, P1, DOI 10.1007/978-0-387-09432-8_1
[9]   RESTRICTION AND SPECTRAL MULTIPLIER THEOREMS ON ASYMPTOTICALLY CONIC MANIFOLDS [J].
Guillarmou, Colin ;
Hassell, Andrew ;
Sikora, Adam .
ANALYSIS & PDE, 2013, 6 (04) :893-950
[10]   GLOBAL-IN-TIME STRICHARTZ ESTIMATES ON NONTRAPPING, ASYMPTOTICALLY CONIC MANIFOLDS [J].
Hassell, Andrew ;
Zhang, Junyong .
ANALYSIS & PDE, 2016, 9 (01) :151-192