共 50 条
Hydroxyl reduced silver nanoparticles on ultrathin boron imidazolate framework nanosheets for electrocatalytic CO2 reduction
被引:0
|作者:
Shao, Ping
[1
,2
]
Yi, Luocai
[2
]
Chen, Jun-Qiang
[2
]
Cao, Changsheng
[2
]
Zhang, Hai-Xia
[2
]
Zhang, Jian
[2
]
机构:
[1] Fuzhou Univ, Coll Chem, Fuzhou 350108, Fujian, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
基金:
中国国家自然科学基金;
关键词:
METAL-ORGANIC FRAMEWORKS;
CARBON-DIOXIDE;
ELECTROCHEMICAL REDUCTION;
CATALYSTS;
D O I:
10.1039/d3se00587a
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Electrocatalytic carbon dioxide reduction reaction (CO2RR) is a promising strategy to mitigate the greenhouse gas effect. The implementation of such a technique highly depends on efficient electrocatalysts. Here, we report a composite catalyst of Ag@BIF-73NSs, prepared by loading Ag nanoparticles on boron imidazolate framework (BIF) nanosheets (BIF-73NSs) through the hydroxyl functional group of the organic ligand in BIF-73NSs, as an electrocatalyst for electroreduction of CO2 to CO. In the obtained Ag@BIF-73NSs catalysts, ultrasmall Ag nanoparticles (& SIM;2 nm) were evenly dispersed on the ultrathin 2D BIF-73 nanosheets with a thickness of & SIM;2 nm. Electrocatalytic results clearly demonstrated that Ag@BIF-73NSs exhibits much higher performance for electrocatalytic reduction of CO2 to CO with a FE close to 90%, which is comparable to those of pure Ag, but comparatively at much lower Ag loading (Ag, 3.39 wt%). Moreover, the mass current density of Ag@BIF-73NSs (1816.67 A cm(-2) g(-1) Ag, ICP-AES 3.39 wt% Ag) is 1101-fold higher than that of Ag@graphene (1.65 A cm(-2) g(-1) Ag, ICP-AES 57.13 wt% Ag) sheet composites. These results indicate that Ag@BIF-73NSs achieves highly selective CO generation with low metal Ag loading in electrochemical CO2RR catalysis by evenly loading Ag nanoparticles on ultrathin boron imidazolate framework nanosheets through coordination effects.
引用
收藏
页码:4120 / 4126
页数:7
相关论文