Quantum advantage in microwave quantum radar

被引:35
作者
Assouly, R. [1 ]
Dassonneville, R. [1 ]
Peronnin, T. [1 ]
Bienfait, A. [1 ]
Huard, B. [1 ]
机构
[1] Ecole Normale Super Lyon, Lab Phys, CNRS, Lyon, France
关键词
LIMIT;
D O I
10.1038/s41567-023-02113-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A central goal of any quantum technology consists in demonstrating an advantage in their performance compared to the best possible classical implementation. A quantum radar improves the detection of a target placed in a noisy environment by exploiting quantum correlations between two modes, probe and idler. The predicted quantum enhancement is not only less sensitive to loss than most quantum metrological applications, but it is also supposed to improve with additional noise. Here we demonstrate a superconducting circuit implementing a microwave quantum radar that can provide more than 20% better performance than any possible classical radar. The scheme involves joint measurement of entangled probe and idler microwave photon states after the probe has been reflected from the target and mixed with thermal noise. By storing the idler state in a resonator, we mitigate the detrimental impact of idler loss on the quantum advantage. Measuring the quantum advantage over a wide range of parameters, we find that the purity of the initial probe-idler entangled state is the main limiting factor and needs to be considered in any practical application. Proposals for quantum radars have suggested that in noisy environments there may be a benefit in sensing using quantum microwaves. A superconducting circuit experiment has now confirmed an advantage exists under appropriate conditions.
引用
收藏
页码:1418 / 1422
页数:6
相关论文
共 53 条
  • [1] Discriminating states:: The quantum Chernoff bound
    Audenaert, K. M. R.
    Calsamiglia, J.
    Munoz-Tapia, R.
    Bagan, E.
    Masanes, Ll.
    Acin, A.
    Verstraete, F.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (16)
  • [2] Microwave quantum illumination using a digital receiver
    Barzanjeh, S.
    Pirandola, S.
    Vitali, D.
    Fink, J. M.
    [J]. SCIENCE ADVANCES, 2020, 6 (19)
  • [3] Microwave Quantum Illumination
    Barzanjeh, Shabir
    Guha, Saikat
    Weedbrook, Christian
    Vitali, David
    Shapiro, Jeffrey H.
    Pirandola, Stefano
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (08)
  • [4] Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem
    Bennett, CH
    Shor, PW
    Smolin, JA
    Thapliyal, AV
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (10) : 2637 - 2655
  • [5] Analog information processing at the quantum limit with a Josephson ring modulator
    Bergeal, N.
    Vijay, R.
    Manucharyan, V. E.
    Siddiqi, I.
    Schoelkopf, R. J.
    Girvin, S. M.
    Devoret, M. H.
    [J]. NATURE PHYSICS, 2010, 6 (04) : 296 - 302
  • [6] Phase-preserving amplification near the quantum limit with a Josephson ring modulator
    Bergeal, N.
    Schackert, F.
    Metcalfe, M.
    Vijay, R.
    Manucharyan, V. E.
    Frunzio, L.
    Prober, D. E.
    Schoelkopf, R. J.
    Girvin, S. M.
    Devoret, M. H.
    [J]. NATURE, 2010, 465 (7294) : 64 - U70
  • [7] Progress Toward an All-Microwave Quantum Illumination Radar
    Bourassa, Jerome
    Wilson, Christopher M.
    [J]. IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2020, 35 (11) : 58 - 69
  • [8] Overarching framework between Gaussian quantum discord and Gaussian quantum illumination
    Bradshaw, Mark
    Assad, Syed M.
    Haw, Jing Yan
    Tan, Si-Hui
    Lam, Ping Koy
    Gu, Mile
    [J]. PHYSICAL REVIEW A, 2017, 95 (02)
  • [9] Entangled Sensor-Networks for Dark-Matter Searches
    Brady, Anthony J.
    Gao, Christina
    Harnik, Roni
    Liu, Zhen
    Zhang, Zheshen
    Zhuang, Quntao
    [J]. PRX QUANTUM, 2022, 3 (03):
  • [10] Local Discrimination of Mixed States
    Calsamiglia, J.
    de Vicente, J. I.
    Munoz-Tapia, R.
    Bagan, E.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (08)