Generalized translation and convolution associated to the linear canonical Fourier-Jacobi transform

被引:2
作者
Akhlidj, Abdellatif [1 ]
Elgadiri, Fatima [1 ]
Dahani, Afaf [1 ]
机构
[1] Univ Hassan 2, Fac Sci Ain Chock, Math & Informat, Casablanca, Morocco
关键词
Canonical Fourier-Jacobi transform; translation operator; convolution product;
D O I
10.1080/10652469.2023.2208725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the Canonical Fourier-Jacobi transform, which is a generalization of Fractional Fourier-Bessel transform. We define and study the translation operator and we also derive the convolution product related to the canonical Fourier-Bessel transform. Some important properties are established.
引用
收藏
页码:799 / 812
页数:14
相关论文
共 11 条
[1]   Optimal filtering with linear canonical transformations [J].
Barshan, B ;
Kutay, MA ;
Ozaktas, HM .
OPTICS COMMUNICATIONS, 1997, 135 (1-3) :32-36
[2]   Harmonic analysis associated to the canonical Fourier Bessel transform [J].
Dhaouadi, Lazhar ;
Sahbani, Jihed ;
Fitouhi, Ahmed .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2021, 32 (04) :290-315
[3]   PALEY-WIENER TYPE THEOREMS FOR A DIFFERENTIAL OPERATOR CONNECTED WITH SYMMETRIC SPACES [J].
FLENSTEDJENSEN, M .
ARKIV FOR MATEMATIK, 1972, 10 (01) :143-+
[4]   CONVOLUTION STRUCTURE FOR JACOBI FUNCTION EXPANSIONS [J].
FLENSTEDJENSEN, M ;
KOORNWINDER, T .
ARKIV FOR MATEMATIK, 1973, 11 (02) :245-262
[5]   NEW PROOF OF A PALEY-WIENER TYPE THEOREM FOR JACOBI TRANSFORM [J].
KOORNWINDER, T .
ARKIV FOR MATEMATIK, 1975, 13 (01) :145-159
[6]   LINEAR CANONICAL TRANSFORMATIONS AND THEIR UNITARY REPRESENTATIONS [J].
MOSHINSKY, M ;
QUESNE, C .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (08) :1772-+
[7]   Eigenfunctions of linear canonical transform [J].
Pei, SC ;
Ding, JJ .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (01) :11-26
[8]   Fourier-Jacobi harmonic analysis and some problems of approximation of functions on the half-axis in L2 metric: Nikol'skii-Besov type function spaces [J].
Platonov, S. S. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (04) :281-298
[9]   Fourier-Jacobi harmonic analysis and some problems of approximation of functions on the half-axis in L2 metric: Jackson's type direct theorems [J].
Platonov, S. S. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2019, 30 (04) :264-281
[10]  
Sahbani S., FRACTIONAL FOURIER J, DOI [10.1007/s11565-020-00337-3, DOI 10.1007/S11565-020-00337-3]