Local volatility under rough volatility

被引:2
作者
Bourgey, Florian [1 ,2 ]
De Marco, Stefano [1 ]
Friz, Peter K. [3 ,4 ]
Pigato, Paolo [5 ]
机构
[1] Ecole Polytech, Inst Polytech Paris, CMAP, CNRS, Paris, France
[2] Bloomberg LP, Quantitat Res, New York, NY USA
[3] Tech Univ Berlin, Berlin, Germany
[4] Weierstr Inst, Berlin, Germany
[5] Univ Roma Tor Vergata, Dept Econ & Finance, Rome, Italy
基金
欧洲研究理事会;
关键词
THE-MONEY SKEW; IMPLIED VOLATILITY; ASYMPTOTICS; MIMICKING;
D O I
10.1111/mafi.12392
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Several asymptotic results for the implied volatility generated by a rough volatility model have been obtained in recent years (notably in the small-maturity regime), providing a better understanding of the shapes of the volatility surface induced by rough volatility models, supporting their calibration power to SP500 option data. Rough volatility models also generate a local volatility surface, via the so-called Markovian projection of the stochastic volatility. We complement the existing results on implied volatility by studying the asymptotic behavior of the local volatility surface generated by a class of rough stochastic volatility models, encompassing the rough Bergomi model. Notably, we observe that the celebrated "1/2 skew rule" linking the short-term at-the-money skew of the implied volatility to the short-term at-the-money skew of the local volatility, a consequence of the celebrated "harmonic mean formula" of [Berestycki et al. (2002). Quantitative Finance, 2, 61-69], is replaced by a new rule: the ratio of the at-the-money implied and local volatility skews tends to the constant 1/(H+3/2)$1/(H + 3/2)$ (as opposed to the constant 1/2), where H is the regularity index of the underlying instantaneous volatility process.
引用
收藏
页码:1119 / 1145
页数:27
相关论文
共 63 条
[11]   A regularity structure for rough volatility [J].
Bayer, Christian ;
Friz, Peter K. ;
Gassiat, Paul ;
Martin, Jorg ;
Stemper, Benjamin .
MATHEMATICAL FINANCE, 2020, 30 (03) :782-832
[12]   Pricing under rough volatility [J].
Bayer, Christian ;
Friz, Peter ;
Gatheral, Jim .
QUANTITATIVE FINANCE, 2016, 16 (06) :887-904
[13]   Decoupling the Short- and Long-Term Behavior of Stochastic Volatility [J].
Bennedsen, Mikkel ;
Lunde, Asger ;
Pakkanen, Mikko S. .
JOURNAL OF FINANCIAL ECONOMETRICS, 2022, 20 (05) :961-1006
[14]   Hybrid scheme for Brownian semistationary processes [J].
Bennedsen, Mikkel ;
Lunde, Asger ;
Pakkanen, Mikko S. .
FINANCE AND STOCHASTICS, 2017, 21 (04) :931-965
[15]   Computing the implied volatility in stochastic volatility models [J].
Berestycki, H ;
Busca, J ;
Florent, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (10) :1352-1373
[16]  
Berestycki H., 2002, Quantitative Finance, V2, P61, DOI 10.1088/1469-7688/2/1/305
[17]   MIMICKING AN ITO PROCESS BY A SOLUTION OF A STOCHASTIC DIFFERENTIAL EQUATION [J].
Brunick, Gerard ;
Shreve, Steven .
ANNALS OF APPLIED PROBABILITY, 2013, 23 (04) :1584-1628
[18]  
Dall'Acqua E, 2022, Arxiv, DOI arXiv:2206.09220
[19]  
De Marco S., 2013, Risk Magazine, V26, P70
[20]   Local Volatility, Conditioned Diffusions, and Varadhan's Formula [J].
De Marco, Stefano ;
Friz, Peter K. .
SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2018, 9 (02) :835-874