The Zero Regrets Algorithm: Optimizing over Pure Nash Equilibria via Integer Programming

被引:7
作者
Dragotto, Gabriele [1 ]
Scatamacchia, Rosario [2 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[2] Politecn Torino, Dipartimento Ingn Gestionale & Prod, I-10129 Turin, Italy
关键词
integer programming games; algorithmic game theory; Nash equilibrium; mathematical programming games; integer programming; COMPLEXITY; DESIGN; PRICE;
D O I
10.1287/ijoc.2022.0282
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Designing efficient algorithms to compute Nash equilibria poses considerable challenges in algorithmic game theory and optimization. In this work, we employ integer programming techniques to compute Nash equilibria in integer programming games, a class of simultaneous and noncooperative games in which each player solves a parameterized integer program. We introduce zero regrets, a general and efficient cutting-plane algorithm to compute, enumerate, and select Nash equilibria. Our framework leverages the concept of equilibrium inequality, an inequality valid for any Nash equilibrium, and the associated equilibrium separation oracle. We evaluate our algorithmic framework on a wide range of practical and methodological problems from the literature, providing a solid benchmark against the existing approaches.
引用
收藏
页码:1143 / 1160
页数:19
相关论文
共 56 条
[1]   Competitive facility location and design problem [J].
Aboolian, Robert ;
Berman, Oded ;
Krass, Dmitry .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 182 (01) :40-62
[2]   Supplier Competition with Option Contracts for Discrete Blocks of Capacity [J].
Anderson, Edward ;
Chen, Bo ;
Shao, Lusheng .
OPERATIONS RESEARCH, 2017, 65 (04) :952-967
[3]  
Anshelevich E., 2003, STOC, P511
[4]   THE PRICE OF STABILITY FOR NETWORK DESIGN WITH FAIR COST ALLOCATION [J].
Anshelevich, Elliot ;
Dasgupta, Anirban ;
Kleinberg, Jon ;
Tardos, Eva ;
Wexler, Tom ;
Roughgarden, Tim .
SIAM JOURNAL ON COMPUTING, 2008, 38 (04) :1602-1623
[5]   Enumeration of all the extreme equilibria in game theory: Bimatrix and polymatrix games [J].
Audet, C. ;
Belhaiza, S. ;
Hansen, P. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 129 (03) :349-372
[6]   Enumeration of Nash equilibria for two-player games [J].
Avis, David ;
Rosenberg, Gabriel D. ;
Savani, Rahul ;
von Stengel, Bernhard .
ECONOMIC THEORY, 2010, 42 (01) :9-37
[7]  
Beck M, 2023, IN PRESS
[8]   RATIONALIZABLE STRATEGIC BEHAVIOR [J].
BERNHEIM, BD .
ECONOMETRICA, 1984, 52 (04) :1007-1028
[9]   Competitive equilibrium in an exchange economy with indivisibilities [J].
Bikhchandani, S ;
Mamer, JW .
JOURNAL OF ECONOMIC THEORY, 1997, 74 (02) :385-413
[10]   A STUDY ON THE COMPUTATIONAL COMPLEXITY OF THE BILEVEL KNAPSACK PROBLEM [J].
Caprara, Alberto ;
Carvalho, Margarida ;
Lodi, Andrea ;
Woeginger, Gerhard J. .
SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (02) :823-838