Non-Abelian braiding of graph vertices in a superconducting processor

被引:47
作者
Andersen, T. I. [1 ]
Lensky, Y. D. [2 ]
Kechedzhi, K. [1 ]
Drozdov, I. K. [1 ,3 ]
Bengtsson, A. [1 ]
Hong, S. [1 ]
Morvan, A. [1 ]
Mi, X. [1 ]
Opremcak, A. [1 ]
Acharya, R. [1 ]
Allen, R. [1 ]
Ansmann, M. [1 ]
Arute, F. [1 ]
Arya, K. [1 ]
Asfaw, A. [1 ]
Atalaya, J. [1 ]
Babbush, R. [1 ]
Bacon, D. [1 ]
Bardin, J. C. [1 ,4 ]
Bortoli, G. [1 ]
Bourassa, A. [1 ]
Bovaird, J. [1 ]
Brill, L. [1 ]
Broughton, M. [1 ]
Buckley, B. B. [1 ]
Buell, D. A. [1 ]
Burger, T. [1 ]
Burkett, B. [1 ]
Bushnell, N. [1 ]
Chen, Z. [1 ]
Chiaro, B. [1 ]
Chik, D. [1 ]
Chou, C. [1 ]
Cogan, J. [1 ]
Collins, R. [1 ]
Conner, P. [1 ]
Courtney, W. [1 ]
Crook, A. L. [1 ]
Curtin, B. [1 ]
Debroy, D. M. [1 ]
Del Toro Barba, A. [1 ]
Demura, S. [1 ]
Dunsworth, A. [1 ]
Eppens, D. [1 ]
Erickson, C. [1 ]
Faoro, L. [1 ]
Farhi, E. [1 ]
Fatemi, R. [1 ]
Ferreira, V. S. [1 ]
Burgos, L. F. [1 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
[3] Univ Connecticut, Dept Phys, Storrs, CT USA
[4] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA USA
[5] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL USA
[6] Univ Technol Sydney, Fac Engn & Informat Technol, QSI, Sydney, NSW, Australia
[7] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA USA
[8] Columbia Univ, Dept Chem, New York, NY USA
[9] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA USA
[10] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA USA
[11] Ewha Womans Univ, Dept Phys, Seoul, South Korea
[12] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[13] Radcliffe Inst Adv Studies, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
QUANTUM COMPUTATION; MAJORANA FERMIONS; ANYONS; STATISTICS; STATES;
D O I
10.1038/s41586-023-05954-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Indistinguishability of particles is a fundamental principle of quantum mechanics(1). For all elementary and quasiparticles observed to date-including fermions, bosons and Abelian anyons-this principle guarantees that the braiding of identical particles leaves the system unchanged(2,3). However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions(4-8). Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well-developed mathematical description of non-Abelian anyons and numerous theoretical proposals(9-22), the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. Whereas efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasiparticles, superconducting quantum processors allow for directly manipulating the many-body wavefunction by means of unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons(9,10), we implement a generalized stabilizer code and unitary protocol(23) to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of using the anyons for quantum computation and use braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and, through the future inclusion of error correction to achieve topological protection, could open a path towards fault-tolerant quantum computing.
引用
收藏
页码:264 / +
页数:17
相关论文
共 47 条
[31]   Helical Liquids and Majorana Bound States in Quantum Wires [J].
Oreg, Yuval ;
Refael, Gil ;
von Oppen, Felix .
PHYSICAL REVIEW LETTERS, 2010, 105 (17)
[32]  
Pachos Jiannis K., 2012, Introduction to Topological Quantum Computation
[33]   Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect [J].
Read, N ;
Green, D .
PHYSICAL REVIEW B, 2000, 61 (15) :10267-10297
[34]   Realizing topologically ordered states on a quantum processor [J].
Satzinger, K. J. ;
Liu, Y-J ;
Smith, A. ;
Knapp, C. ;
Newman, M. ;
Jones, C. ;
Chen, Z. ;
Quintana, C. ;
Mi, X. ;
Dunsworth, A. ;
Gidney, C. ;
Aleiner, I ;
Arute, F. ;
Arya, K. ;
Atalaya, J. ;
Babbush, R. ;
Bardin, J. C. ;
Barends, R. ;
Basso, J. ;
Bengtsson, A. ;
Bilmes, A. ;
Broughton, M. ;
Buckley, B. B. ;
Buell, D. A. ;
Burkett, B. ;
Bushnell, N. ;
Chiaro, B. ;
Collins, R. ;
Courtney, W. ;
Demura, S. ;
Derk, A. R. ;
Eppens, D. ;
Erickson, C. ;
Faoro, L. ;
Farhi, E. ;
Fowler, A. G. ;
Foxen, B. ;
Giustina, M. ;
Greene, A. ;
Gross, J. A. ;
Harrigan, M. P. ;
Harrington, S. D. ;
Hilton, J. ;
Hong, S. ;
Huang, T. ;
Huggins, W. J. ;
Ioffe, L. B. ;
Isakov, S., V ;
Jeffrey, E. ;
Jiang, Z. .
SCIENCE, 2021, 374 (6572) :1237-+
[35]   Anyons and the quantum Hall effect - A pedagogical review [J].
Stern, Ady .
ANNALS OF PHYSICS, 2008, 323 (01) :204-249
[36]   Topological Quantum Computation-From Basic Concepts to First Experiments [J].
Stern, Ady ;
Lindner, Netanel H. .
SCIENCE, 2013, 339 (6124) :1179-1184
[37]  
Tantivasadakarn N., 2022, PREPRINT
[38]   Theory of twist liquids: Gauging an anyonic symmetry [J].
Teo, Jeffrey C. Y. ;
Hughes, Taylor L. ;
Fradkin, Eduardo .
ANNALS OF PHYSICS, 2015, 360 :349-445
[39]   Unconventional fusion and braiding of topological defects in a lattice model [J].
Teo, Jeffrey C. Y. ;
Roy, Abhishek ;
Chen, Xiao .
PHYSICAL REVIEW B, 2014, 90 (11)
[40]   Three-dimensional topological lattice models with surface anyons [J].
von Keyserlingk, C. W. ;
Burnell, F. J. ;
Simon, S. H. .
PHYSICAL REVIEW B, 2013, 87 (04)