Non-Abelian braiding of graph vertices in a superconducting processor

被引:45
|
作者
Andersen, T. I. [1 ]
Lensky, Y. D. [2 ]
Kechedzhi, K. [1 ]
Drozdov, I. K. [1 ,3 ]
Bengtsson, A. [1 ]
Hong, S. [1 ]
Morvan, A. [1 ]
Mi, X. [1 ]
Opremcak, A. [1 ]
Acharya, R. [1 ]
Allen, R. [1 ]
Ansmann, M. [1 ]
Arute, F. [1 ]
Arya, K. [1 ]
Asfaw, A. [1 ]
Atalaya, J. [1 ]
Babbush, R. [1 ]
Bacon, D. [1 ]
Bardin, J. C. [1 ,4 ]
Bortoli, G. [1 ]
Bourassa, A. [1 ]
Bovaird, J. [1 ]
Brill, L. [1 ]
Broughton, M. [1 ]
Buckley, B. B. [1 ]
Buell, D. A. [1 ]
Burger, T. [1 ]
Burkett, B. [1 ]
Bushnell, N. [1 ]
Chen, Z. [1 ]
Chiaro, B. [1 ]
Chik, D. [1 ]
Chou, C. [1 ]
Cogan, J. [1 ]
Collins, R. [1 ]
Conner, P. [1 ]
Courtney, W. [1 ]
Crook, A. L. [1 ]
Curtin, B. [1 ]
Debroy, D. M. [1 ]
Del Toro Barba, A. [1 ]
Demura, S. [1 ]
Dunsworth, A. [1 ]
Eppens, D. [1 ]
Erickson, C. [1 ]
Faoro, L. [1 ]
Farhi, E. [1 ]
Fatemi, R. [1 ]
Ferreira, V. S. [1 ]
Burgos, L. F. [1 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
[3] Univ Connecticut, Dept Phys, Storrs, CT USA
[4] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA USA
[5] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL USA
[6] Univ Technol Sydney, Fac Engn & Informat Technol, QSI, Sydney, NSW, Australia
[7] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA USA
[8] Columbia Univ, Dept Chem, New York, NY USA
[9] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA USA
[10] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA USA
[11] Ewha Womans Univ, Dept Phys, Seoul, South Korea
[12] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[13] Radcliffe Inst Adv Studies, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
QUANTUM COMPUTATION; MAJORANA FERMIONS; ANYONS; STATISTICS; STATES;
D O I
10.1038/s41586-023-05954-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Indistinguishability of particles is a fundamental principle of quantum mechanics(1). For all elementary and quasiparticles observed to date-including fermions, bosons and Abelian anyons-this principle guarantees that the braiding of identical particles leaves the system unchanged(2,3). However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions(4-8). Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well-developed mathematical description of non-Abelian anyons and numerous theoretical proposals(9-22), the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. Whereas efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasiparticles, superconducting quantum processors allow for directly manipulating the many-body wavefunction by means of unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons(9,10), we implement a generalized stabilizer code and unitary protocol(23) to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of using the anyons for quantum computation and use braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and, through the future inclusion of error correction to achieve topological protection, could open a path towards fault-tolerant quantum computing.
引用
收藏
页码:264 / +
页数:17
相关论文
共 50 条
  • [2] Non-Abelian braiding of Fibonacci anyons with a superconducting processor
    Xu, Shibo
    Sun, Zheng-Zhi
    Wang, Ke
    Li, Hekang
    Zhu, Zitian
    Dong, Hang
    Deng, Jinfeng
    Zhang, Xu
    Chen, Jiachen
    Wu, Yaozu
    Zhang, Chuanyu
    Jin, Feitong
    Zhu, Xuhao
    Gao, Yu
    Zhang, Aosai
    Wang, Ning
    Zou, Yiren
    Tan, Ziqi
    Shen, Fanhao
    Zhong, Jiarun
    Bao, Zehang
    Li, Weikang
    Jiang, Wenjie
    Yu, Li-Wei
    Song, Zixuan
    Zhang, Pengfei
    Xiang, Liang
    Guo, Qiujiang
    Wang, Zhen
    Song, Chao
    Wang, H.
    Deng, Dong-Ling
    NATURE PHYSICS, 2024, 20 (09) : 1469 - 1475
  • [3] Non-Abelian Braiding of Light
    Iadecola, Thomas
    Schuster, Thomas
    Chamon, Claudio
    PHYSICAL REVIEW LETTERS, 2016, 117 (07)
  • [4] Shortcuts to non-Abelian braiding
    Karzig, Torsten
    Pientka, Falko
    Refael, Gil
    von Oppen, Felix
    PHYSICAL REVIEW B, 2015, 91 (20):
  • [5] Non-Abelian braiding on photonic chips
    Xu-Lin Zhang
    Feng Yu
    Ze-Guo Chen
    Zhen-Nan Tian
    Qi-Dai Chen
    Hong-Bo Sun
    Guancong Ma
    Nature Photonics, 2022, 16 : 390 - 395
  • [6] Non-Abelian braiding on photonic chips
    Zhang, Xu-Lin
    Yu, Feng
    Chen, Ze-Guo
    Tian, Zhen-Nan
    Chen, Qi-Dai
    Sun, Hong-Bo
    Ma, Guancong
    NATURE PHOTONICS, 2022, 16 (05) : 390 - +
  • [7] Non-Abelian Braiding of Lattice Bosons
    Kapit, Eliot
    Ginsparg, Paul
    Mueller, Erich
    PHYSICAL REVIEW LETTERS, 2012, 108 (06)
  • [8] Braiding and Fusion of Non-Abelian Vortex Anyons
    Mawson, T.
    Petersen, T. C.
    Slingerland, J. K.
    Simula, T. P.
    PHYSICAL REVIEW LETTERS, 2019, 123 (14)
  • [9] Classical non-Abelian braiding of acoustic modes
    Chen, Ze-Guo
    Zhang, Ruo-Yang
    Chan, C. T.
    Ma, Guancong
    NATURE PHYSICS, 2022, 18 (02) : 179 - +
  • [10] Non-Abelian Braiding of Topological Edge Bands
    Long, Yang
    Wang, Zihao
    Zhang, Chen
    Xue, Haoran
    Zhao, Y. X.
    Zhang, Baile
    PHYSICAL REVIEW LETTERS, 2024, 132 (23)