Non-Abelian braiding of graph vertices in a superconducting processor

被引:47
作者
Andersen, T. I. [1 ]
Lensky, Y. D. [2 ]
Kechedzhi, K. [1 ]
Drozdov, I. K. [1 ,3 ]
Bengtsson, A. [1 ]
Hong, S. [1 ]
Morvan, A. [1 ]
Mi, X. [1 ]
Opremcak, A. [1 ]
Acharya, R. [1 ]
Allen, R. [1 ]
Ansmann, M. [1 ]
Arute, F. [1 ]
Arya, K. [1 ]
Asfaw, A. [1 ]
Atalaya, J. [1 ]
Babbush, R. [1 ]
Bacon, D. [1 ]
Bardin, J. C. [1 ,4 ]
Bortoli, G. [1 ]
Bourassa, A. [1 ]
Bovaird, J. [1 ]
Brill, L. [1 ]
Broughton, M. [1 ]
Buckley, B. B. [1 ]
Buell, D. A. [1 ]
Burger, T. [1 ]
Burkett, B. [1 ]
Bushnell, N. [1 ]
Chen, Z. [1 ]
Chiaro, B. [1 ]
Chik, D. [1 ]
Chou, C. [1 ]
Cogan, J. [1 ]
Collins, R. [1 ]
Conner, P. [1 ]
Courtney, W. [1 ]
Crook, A. L. [1 ]
Curtin, B. [1 ]
Debroy, D. M. [1 ]
Del Toro Barba, A. [1 ]
Demura, S. [1 ]
Dunsworth, A. [1 ]
Eppens, D. [1 ]
Erickson, C. [1 ]
Faoro, L. [1 ]
Farhi, E. [1 ]
Fatemi, R. [1 ]
Ferreira, V. S. [1 ]
Burgos, L. F. [1 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
[3] Univ Connecticut, Dept Phys, Storrs, CT USA
[4] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA USA
[5] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL USA
[6] Univ Technol Sydney, Fac Engn & Informat Technol, QSI, Sydney, NSW, Australia
[7] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA USA
[8] Columbia Univ, Dept Chem, New York, NY USA
[9] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA USA
[10] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA USA
[11] Ewha Womans Univ, Dept Phys, Seoul, South Korea
[12] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[13] Radcliffe Inst Adv Studies, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
QUANTUM COMPUTATION; MAJORANA FERMIONS; ANYONS; STATISTICS; STATES;
D O I
10.1038/s41586-023-05954-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Indistinguishability of particles is a fundamental principle of quantum mechanics(1). For all elementary and quasiparticles observed to date-including fermions, bosons and Abelian anyons-this principle guarantees that the braiding of identical particles leaves the system unchanged(2,3). However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions(4-8). Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well-developed mathematical description of non-Abelian anyons and numerous theoretical proposals(9-22), the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. Whereas efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasiparticles, superconducting quantum processors allow for directly manipulating the many-body wavefunction by means of unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons(9,10), we implement a generalized stabilizer code and unitary protocol(23) to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of using the anyons for quantum computation and use braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and, through the future inclusion of error correction to achieve topological protection, could open a path towards fault-tolerant quantum computing.
引用
收藏
页码:264 / +
页数:17
相关论文
共 47 条
  • [1] [Anonymous], 1993, Modern Quantum Mechanics, DOI DOI 10.1016/j.aop.2014.02.004
  • [2] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [3] Observation of half-integer thermal Hall conductance
    Banerjee, Mitali
    Heiblum, Moty
    Umansky, Vladimir
    Feldman, Dima E.
    Oreg, Yuval
    Stern, Ady
    [J]. NATURE, 2018, 559 (7713) : 205 - +
  • [4] Symmetry fractionalization, defects, and gauging of topological phases
    Barkeshli, Maissam
    Bonderson, Parsa
    Cheng, Meng
    Wang, Zhenghan
    [J]. PHYSICAL REVIEW B, 2019, 100 (11)
  • [5] Twist defects and projective non-Abelian braiding statistics
    Barkeshli, Maissam
    Jian, Chao-Ming
    Qi, Xiao-Liang
    [J]. PHYSICAL REVIEW B, 2013, 87 (04)
  • [6] Topological Nematic States and Non-Abelian Lattice Dislocations
    Barkeshli, Maissam
    Qi, Xiao-Liang
    [J]. PHYSICAL REVIEW X, 2012, 2 (03):
  • [7] Fractional statistics in anyon collisions
    Bartolomei, H.
    Kumar, M.
    Bisognin, R.
    Marguerite, A.
    Berroir, J. -M.
    Bocquillon, E.
    Placais, B.
    Cavanna, A.
    Dong, Q.
    Gennser, U.
    Jin, Y.
    Feve, G.
    [J]. SCIENCE, 2020, 368 (6487) : 173 - +
  • [8] Non-Abelian statistics with mixed-boundary punctures on the toric code
    Benhemou, Asmae
    Pachos, Jiannis K.
    Browne, Dan E.
    [J]. PHYSICAL REVIEW A, 2022, 105 (04)
  • [9] Topological Order with a Twist: Ising Anyons from an Abelian Model
    Bombin, H.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (03)
  • [10] Detecting non-Abelian statistics in the ν=5/2 fractional quantum Hall state -: art. no. 016803
    Bonderson, P
    Kitaev, A
    Shtengel, K
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (01)