Ultra-Compact and NonVolatile Nanophotonic Neural Networks

被引:13
作者
Yuan, Huan [1 ,2 ,3 ]
Wang, Zhicheng [2 ,4 ]
Peng, Zheng [2 ,4 ]
Wu, Jiagui [1 ]
Yang, Junbo [2 ]
机构
[1] Southwest Univ, Sch Phys Sci & Technol, Chongqing 400715, Peoples R China
[2] Natl Univ Def Technol, Ctr Mat Sci, Changsha 410073, Peoples R China
[3] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Peoples R China
[4] Southwest Univ, Coll Artificial Intelligence, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划; 中国博士后科学基金;
关键词
digital nanophotonics; phase change material; photonic neural networks; PHASE-CHANGE MATERIALS; MEMORY;
D O I
10.1002/adom.202300215
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A nanophotonic neural network (N-PNN) architecture is proposed with compact nanophotonic scattering units and a hybrid structure of silicon and nonvolatile arrayed Sb2Se3. This PNN can execute deep neural networks (DNN) classification and identification tasks with a broad operation bandwidth and very compact footprint. The reconstruction of the convolutional kernel core is realized by digitally switching the phase state of the Sb2Se3 array. Based on a three-dimensional finite-difference time-domain analysis, the core unit received only 4.92 x 2.34 mu m(2) footprint. The convolution kernel unit weights are reconfigured with high-accuracy (7-bit) image processing and recognition in the wavelength C-band (1530-1570 nm). Furthermore, various deep-learning tasks (speech, digital patterns, and clothing patterns) are investigated. The accuracy of the classification and recognition efficiency reached almost the same level as that of a 64-bit computer. The size of the N-PNN is almost two orders of magnitude smaller than that of classic Mach-Zehnder interferometer meshes. It is conducive for scalability, high-radix DNN, and optoelectronic fusion of photonic integrated circuits and electronic integrated circuits.
引用
收藏
页数:10
相关论文
共 55 条
[1]   Tunable nanophotonics enabled by chalcogenide phase-change materials [J].
Abdollahramezani, Sajjad ;
Hemmatyar, Omid ;
Taghinejad, Hossein ;
Krasnok, Alex ;
Kiarashinejad, Yashar ;
Zandehshahvar, Mohammadreza ;
Alu, Andrea ;
Adibi, Ali .
NANOPHOTONICS, 2020, 9 (05) :1189-1241
[2]   Microcomb-based integrated photonic processing unit [J].
Bai, Bowen ;
Yang, Qipeng ;
Shu, Haowen ;
Chang, Lin ;
Yang, Fenghe ;
Shen, Bitao ;
Tao, Zihan ;
Wang, Jing ;
Xu, Shaofu ;
Xie, Weiqiang ;
Zou, Weiwen ;
Hu, Weiwei ;
Bowers, John E. E. ;
Wang, Xingjun .
NATURE COMMUNICATIONS, 2023, 14 (01)
[3]   Deep Learning in Biomedical Data Science [J].
Baldi, Pierre .
ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, VOL 1, 2018, 1 :181-205
[4]   Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material [J].
Delaney, Matthew ;
Zeimpekis, Ioannis ;
Du, Han ;
Yan, Xingzhao ;
Banakar, Mehdi ;
Thomson, David J. ;
Hewak, Daniel W. ;
Muskens, Otto L. .
SCIENCE ADVANCES, 2021, 7 (25)
[5]   A New Family of Ultralow Loss Reversible Phase-Change Materials for Photonic Integrated Circuits: Sb2S3 and Sb2Se3 [J].
Delaney, Matthew ;
Zeimpekis, Ioannis ;
Lawson, Daniel ;
Hewak, Daniel W. ;
Muskens, Otto L. .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (36)
[6]   Deep learning-enabled medical computer vision [J].
Esteva, Andre ;
Chou, Katherine ;
Yeung, Serena ;
Naik, Nikhil ;
Madani, Ali ;
Mottaghi, Ali ;
Liu, Yun ;
Topol, Eric ;
Dean, Jeff ;
Socher, Richard .
NPJ DIGITAL MEDICINE, 2021, 4 (01)
[7]   All-optical spiking neurosynaptic networks with self-learning capabilities [J].
Feldmann, J. ;
Youngblood, N. ;
Wright, C. D. ;
Bhaskaran, H. ;
Pernice, W. H. P. .
NATURE, 2019, 569 (7755) :208-+
[8]   An All-Optical, Non-volatile, Bidirectional, Phase-Change Meta-Switch [J].
Gholipour, Behrad ;
Zhang, Jianfa ;
MacDonald, Kevin F. ;
Hewak, Daniel W. ;
Zheludev, Nikolay I. .
ADVANCED MATERIALS, 2013, 25 (22) :3050-3054
[9]  
Graves A, 2013, INT CONF ACOUST SPEE, P6645, DOI 10.1109/ICASSP.2013.6638947
[10]  
Hemmatyar O., ARXIV210712159, V2107