High Performance and Durable Anode with 10-Fold Reduction of Iridium Loading for Proton Exchange Membrane Water Electrolysis

被引:36
|
作者
Torrero, Jorge [1 ]
Morawietz, Tobias [1 ,2 ]
Sanchez, Daniel Garcia [1 ]
Galyamin, Dmitry [3 ]
Retuerto, Maria [3 ]
Martin-Diaconescu, Vlad [4 ]
Rojas, Sergio [3 ]
Alonso, Jose Antonio [5 ]
Gago, Aldo Saul [1 ]
Friedrich, Kaspar Andreas [1 ]
机构
[1] German Aerosp Ctr DLR, Inst Engn Thermodynam Electrochem Energy Technol, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany
[2] Esslingen Univ Appl Sci, Fac Sci Energy & Bldg Serv, Kanalstr 33, D-73728 Esslingen, Germany
[3] CSIC, Inst Catalisis & Petroleoquim, Grp Energia & Quim Sostenibles, C Marie Curie 2, Madrid 28049, Spain
[4] CELLS ALBA Synchrotron Radiat Facil, Carrer Llum 2-26, Cerdanyola Del Valles 08290, Spain
[5] CSIC, Inst Ciencia Mat Madrid, C Sor Juana Ines Cruz 3, Madrid 28049, Spain
基金
欧盟地平线“2020”;
关键词
degradation; iridium; low loading; OER; PEM water electrolysis; OXYGEN EVOLUTION; FUEL-CELLS; CATALYST; ACID; PEROVSKITE; SR2MIRO6; LAYERS; GAS;
D O I
10.1002/aenm.202204169
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton exchange membrane water electrolysis (PEMWE) technology is especially advantageous for green H-2 production as a clean energy vector. During the water electrolysis process, the oxygen evolution reaction (OER) requires a large amount of iridium (2-3 mg(Ir) cm(-2)) as catalyst. This material is scarce and expensive, representing a major bottleneck for large-scale deployment of electrolyzers. This work develops an anode with 10-fold reduction of Ir loading (0.2 mg(Ir) cm(-2)) compared to what it is used in commercial PEMWE for more than 1000 h. An advanced catalyst based on an Ir mixed oxide (Sr2CaIrO6) is used for this purpose. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS) analyses show that the unconventional structure of the reconstructed catalyst can contribute to the reduction of Ir in the catalyst layer. The reconfiguration of the ionomer in the catalyst layer is also observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM), results in almost the full coverage of the catalytic layer with ionomer. The results presented herein demonstrate that it is possible to achieve high performance and stability in PEMWE with low Ir loading in the anode without showing significant degradation.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Overall Design of Anode with Gradient Ordered Structure with Low Iridium Loading for Proton Exchange Membrane Water Electrolysis
    Dong, Shu
    Zhang, Chunyan
    Yue, Zhouying
    Zhang, Fengru
    Zhao, Hao
    Cheng, Qingqing
    Wang, Guoliang
    Xu, Jianfeng
    Chen, Chi
    Zou, Zhiqing
    Dou, Zhenlan
    Yang, Hui
    NANO LETTERS, 2022, 22 (23) : 9434 - 9440
  • [2] Effects of the Dynamic Loading Frequency on Performance of the Proton Exchange Membrane Water Electrolysis
    Shi, Xiaoyun
    Qiu, Xutao
    Yuan, Zhuolin
    Zhang, Runcheng
    Zhao, Kun
    Tan, Aidong
    Xu, Guizhi
    Song, Jie
    Liu, Jianguo
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (48) : 66089 - 66098
  • [3] Progress on the anode catalysts for proton exchange membrane water electrolysis
    Zhang, Jiahao
    Yue, Qin
    CHINESE SCIENCE BULLETIN-CHINESE, 2022, 67 (24): : 2889 - 2905
  • [4] Highly Active and Durable Iridium Nickel Oxide Platelets for a Proton Exchange Membrane Water Electrolyzer with Low Iridium Loading
    Jeon, Sun Seo
    Jeon, Hyeseong
    Lee, Jaewon
    Haaring, Robert
    Lee, Wonjae
    Nam, Jeonghyun
    Cho, Sung June
    Lee, Hyunjoo
    ACS CATALYSIS, 2025, 15 (06): : 4963 - 4974
  • [5] Controlled Structural Activation of Iridium Single Atom Catalyst for High-Performance Proton Exchange Membrane Water Electrolysis
    Ko, Wonjae
    Shim, Jaehyuk
    Ahn, Hyunsoo
    Kwon, Hee Jung
    Lee, Kangjae
    Jung, Yoon
    Antink, Wytse Hooch
    Lee, Chan Woo
    Heo, Sungeun
    Lee, Seongbeom
    Jang, Junghwan
    Kim, Jiheon
    Lee, Hyeon Seok
    Cho, Sung-Pyo
    Lee, Byoung-Hoon
    Kim, Minho
    Sung, Yung-Eun
    Hyeon, Taeghwan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2025, 147 (03) : 2369 - 2379
  • [6] Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis
    Wu, Zhen-Yu
    Chen, Feng-Yang
    Lie, Boyang
    Yu, Shen-Wei
    Finfrock, Y. Zou
    Meira, Debora Motta
    Yan, Qiang-Qiang
    Zhu, Peng
    Chen, Ming-Xi
    Song, Tian-Wei
    Yin, Zhouyang
    Liang, Hai-Wei
    Zhang, Sen
    Wang, Guofeng
    Wang, Haotian
    NATURE MATERIALS, 2023, 22 (01) : 100 - +
  • [7] Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis
    Zhen-Yu Wu
    Feng-Yang Chen
    Boyang Li
    Shen-Wei Yu
    Y. Zou Finfrock
    Debora Motta Meira
    Qiang-Qiang Yan
    Peng Zhu
    Ming-Xi Chen
    Tian-Wei Song
    Zhouyang Yin
    Hai-Wei Liang
    Sen Zhang
    Guofeng Wang
    Haotian Wang
    Nature Materials, 2023, 22 : 100 - 108
  • [8] Morphological analysis of iridium oxide anode catalyst layers for proton exchange membrane water electrolysis using high-resolution imaging
    Ferner, Kara J.
    Park, Janghoon
    Kang, Zhenye
    Mauger, Scott A.
    Ulsh, Michael
    Bender, Guido
    Litster, Shawn
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 59 : 176 - 186
  • [9] Acid-durable, high-performance cobalt phosphide catalysts for hydrogen evolution in proton exchange membrane water electrolysis
    Yoon, Young
    Kim, Hoyoung
    Kim, Soo-Kil
    Kim, Jae Jeong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (11) : 16842 - 16855
  • [10] Physical Degradation of Anode Catalyst Layer in Proton Exchange Membrane Water Electrolysis
    Xu, Shuwen
    Liu, Han
    Zheng, Nanfeng
    Tao, Hua Bing
    ADVANCED MATERIALS INTERFACES, 2025, 12 (04):