Motives of moduli spaces of bundles on curves via variation of stability and flips

被引:2
作者
Fu, Lie [1 ,2 ]
Hoskins, Victoria [3 ,5 ]
Lehalleur, Simon Pepin [4 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee IRMA, Strasbourg, France
[2] Univ Strasbourg, Inst Etud Avancees Univ Strasbourg USIAS, Strasbourg, France
[3] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys IMAPP, Nijmegen, Netherlands
[4] Univ Amsterdam, Korteweg de Vries Inst Math KdVI, Amsterdam, Netherlands
[5] Radboud Univ Nijmegen, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2023年 / 108卷 / 01期
关键词
VECTOR-BUNDLES; HIGGS BUNDLES; CHOW RING; COHOMOLOGY; RANK-2; RATIONALITY; INVARIANCE; VARIETIES; EQUATIONS; 1-CYCLES;
D O I
10.1112/jlms.12739
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the rational Chow motives of certain moduli spaces of vector bundles on a smooth projective curve with additional structure (such as a parabolic structure or Higgs field). In the parabolic case, these moduli spaces depend on a choice of stability condition given by weights; our approach is to use explicit descriptions of variation of this stability condition in terms of simple birational transformations (standard flips/flops and Mukai flops) for which we understand the variation of the Chow motives. For moduli spaces of parabolic vector bundles, we describe the change in motive under wall-crossings, and for moduli spaces of parabolic Higgs bundles, we show the motive does not change under wall-crossings. Furthermore, we prove a motivic analogue of a classical theorem of Harder and Narasimhan relating the rational cohomology of moduli spaces of vector bundles with and without fixed determinant. For rank 2 vector bundles of odd degree, we obtain formulae for the rational Chow motives of moduli spaces of semistable vector bundles, moduli spaces of Higgs bundles and moduli spaces of parabolic (Higgs) bundles that are semistable with respect to a generic weight (all with and without fixed determinant).
引用
收藏
页码:1 / 53
页数:53
相关论文
共 50 条
[31]   MODULI SPACES OF PARABOLIC U(p, q)-HIGGS BUNDLES [J].
Garcia-Prada, O. ;
Logares, M. ;
Munoz, Vicente .
QUARTERLY JOURNAL OF MATHEMATICS, 2009, 60 (02) :183-233
[32]   Poincaré polynomial of the moduli spaces of parabolic bundles [J].
Yogish I. Holla .
Proceedings Mathematical Sciences, 2000, 110 :233-261
[33]   Parallels between Moduli of Quiver Representations and Vector Bundles over Curves [J].
Hoskins, Victoria .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
[34]   Picard Groups of Moduli Spaces of Torsionfree Sheaves on Curves [J].
Bhosle, Usha N. .
VECTOR BUNDLES AND COMPLEX GEOMETRY, 2010, 522 :31-42
[35]   Poincare polynomial of the moduli spaces of parabolic bundles [J].
Holla, YI .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2000, 110 (03) :233-261
[36]   Triality and automorphisms of principal bundles moduli spaces [J].
Anton-Sancho, Alvaro .
ADVANCES IN GEOMETRY, 2024, 24 (03) :421-435
[37]   Disconnected moduli spaces of stable bundles on surfaces [J].
Coskun, Izzet ;
Huizenga, Jack ;
Kopper, John .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (02) :812-824
[38]   Euler characteristics of moduli spaces of curves [J].
Bini, Gilberto ;
Harer, John .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (02) :487-512
[39]   Moduli of Rank 2 Stable Bundles and Hecke Curves [J].
Pal, Sarbeswar .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (04) :865-877
[40]   Mirror symmetry for moduli spaces of Higgs bundles via p-adic integration [J].
Groechenig, Michael ;
Wyss, Dimitri ;
Ziegler, Paul .
INVENTIONES MATHEMATICAE, 2020, 221 (02) :505-596