Motives of moduli spaces of bundles on curves via variation of stability and flips

被引:2
作者
Fu, Lie [1 ,2 ]
Hoskins, Victoria [3 ,5 ]
Lehalleur, Simon Pepin [4 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee IRMA, Strasbourg, France
[2] Univ Strasbourg, Inst Etud Avancees Univ Strasbourg USIAS, Strasbourg, France
[3] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys IMAPP, Nijmegen, Netherlands
[4] Univ Amsterdam, Korteweg de Vries Inst Math KdVI, Amsterdam, Netherlands
[5] Radboud Univ Nijmegen, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2023年 / 108卷 / 01期
关键词
VECTOR-BUNDLES; HIGGS BUNDLES; CHOW RING; COHOMOLOGY; RANK-2; RATIONALITY; INVARIANCE; VARIETIES; EQUATIONS; 1-CYCLES;
D O I
10.1112/jlms.12739
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the rational Chow motives of certain moduli spaces of vector bundles on a smooth projective curve with additional structure (such as a parabolic structure or Higgs field). In the parabolic case, these moduli spaces depend on a choice of stability condition given by weights; our approach is to use explicit descriptions of variation of this stability condition in terms of simple birational transformations (standard flips/flops and Mukai flops) for which we understand the variation of the Chow motives. For moduli spaces of parabolic vector bundles, we describe the change in motive under wall-crossings, and for moduli spaces of parabolic Higgs bundles, we show the motive does not change under wall-crossings. Furthermore, we prove a motivic analogue of a classical theorem of Harder and Narasimhan relating the rational cohomology of moduli spaces of vector bundles with and without fixed determinant. For rank 2 vector bundles of odd degree, we obtain formulae for the rational Chow motives of moduli spaces of semistable vector bundles, moduli spaces of Higgs bundles and moduli spaces of parabolic (Higgs) bundles that are semistable with respect to a generic weight (all with and without fixed determinant).
引用
收藏
页码:1 / 53
页数:53
相关论文
共 50 条
  • [11] On the motives of moduli of chains and Higgs bundles
    Garcia-Prada, Oscar
    Heinloth, Jochen
    Schmitt, Alexander
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (12) : 2617 - 2668
  • [12] The line bundles on the moduli stack of principal bundles on families of curves
    Fringuelli, Roberto
    Viviani, Filippo
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2025, 68 (01) : 80 - 127
  • [13] Globally F-regular type of the moduli spaces of parabolic symplectic/orthogonal bundles on curves
    Wang, Jianping
    Wen, Xueqing
    FORUM OF MATHEMATICS SIGMA, 2024, 12
  • [14] A Torelli theorem for moduli spaces of principal bundles on curves defined over R
    Biswas, Indranil
    Serman, Olivier
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (06)
  • [15] Brill-Noether loci on moduli spaces of symplectic bundles over curves
    Bajravani, Ali
    Hitching, George H.
    COLLECTANEA MATHEMATICA, 2021, 72 (02) : 443 - 469
  • [16] On the rationality of moduli spaces of vector bundles over chain-like curves
    Suhas, B. N.
    Roy, Praveen Kumar
    Singh, Amit Kumar
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 179
  • [17] Flips and variation of moduli scheme of sheaves on a surface
    Yamada, Kimiko
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2009, 49 (02): : 419 - 425
  • [18] Rationality of Moduli Spaces of Plane Curves of Small Degree
    Boehning, Christian
    von Bothmer, Hans-Christian Graf
    Kroeker, Jakob
    EXPERIMENTAL MATHEMATICS, 2009, 18 (04) : 499 - 508
  • [19] Moduli spaces of linear bundles on hyperquadrics
    Costa, L.
    Miro-Roig, R. M.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (06) : 2471 - 2487
  • [20] Variation of Gieseker moduli spaces via quiver GIT
    Greb, Daniel
    Ross, Julius
    Toma, Matei
    GEOMETRY & TOPOLOGY, 2016, 20 (03) : 1539 - 1610