Stochastic Wasserstein Hamiltonian Flows

被引:5
|
作者
Cui, Jianbo [1 ]
Liu, Shu [2 ]
Zhou, Haomin [3 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[2] UCLA, Dept Math, Los Angeles, CA 90095 USA
[3] Georgia Tech, Sch Math, Atlanta, GA 30332 USA
关键词
Stochastic Hamiltonian flow; Density manifold; Wong-Zakai approximation; SCHRODINGER-EQUATION; OPTIMAL TRANSPORT; APPROXIMATIONS; CONVERGENCE; DYNAMICS; SPACE;
D O I
10.1007/s10884-023-10264-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the stochastic Hamiltonian flow in Wasserstein manifold, the probability density space equipped with L-2-Wasserstein metric tensor, via the Wong-Zakai approximation. We begin our investigation by showing that the stochastic Euler-Lagrange equation, regardless it is deduced from either the variational principle or particle dynamics, can be interpreted as the stochastic kinetic Hamiltonian flows in Wasserstein manifold. We further propose a novel variational formulation to derive more general stochastic Wasserstein Hamiltonian flows, and demonstrate that this new formulation is applicable to various systems including the stochastic Schrodinger equation, Schrodinger equation with random dispersion, and Schrodinger bridge problem with common noise.
引用
收藏
页码:3885 / 3921
页数:37
相关论文
共 50 条
  • [41] Statistical Aspects of Wasserstein Distances
    Panaretos, Victor M.
    Zemel, Yoav
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 6, 2019, 6 : 405 - 431
  • [42] New phenomena in deviation of Birkhoff integrals for locally Hamiltonian flows
    Fraczek, Krzysztof
    Kim, Minsung
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (807): : 81 - 149
  • [43] Cocycles over interval exchange transformations and multivalued Hamiltonian flows
    Conze, Jean-Pierre
    Fraczek, Krzysztof
    ADVANCES IN MATHEMATICS, 2011, 226 (05) : 4373 - 4428
  • [44] Bounding Wasserstein Distance with Couplings
    Biswas, Niloy
    Mackey, Lester
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (548) : 2947 - 2958
  • [45] Measuring association with Wasserstein distances
    Wiesel, Johannes C. W.
    BERNOULLI, 2022, 28 (04) : 2816 - 2832
  • [46] The Wasserstein distance to the circular law
    Jalowy, Jonas
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (04): : 2285 - 2307
  • [47] DOUBLY NONLINEAR DIFFUSIVE PDEs: NEW EXISTENCE RESULTS VIA GENERALIZED WASSERSTEIN GRADIENT FLOWS
    Caillet, Thibault
    Santambrogio, Filippo
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (06) : 7043 - 7073
  • [48] Stochastic symplectic partitioned Runge-Kutta methods for stochastic Hamiltonian systems with multiplicative noise
    Ma, Qiang
    Ding, Xiaohua
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 252 : 520 - 534
  • [49] Decentralized Stochastic Gradient Langevin Dynamics and Hamiltonian Monte Carlo
    Gurbuzbalaban, Mert
    Gao, Xuefeng
    Hu, Yuanhan
    Zhu, Lingjiong
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [50] BACKWARD STOCHASTIC SCHRODINGER AND INFINITE-DIMENSIONAL HAMILTONIAN EQUATIONS
    Xu, Qing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (11) : 5379 - 5412