Stochastic Wasserstein Hamiltonian Flows

被引:5
|
作者
Cui, Jianbo [1 ]
Liu, Shu [2 ]
Zhou, Haomin [3 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[2] UCLA, Dept Math, Los Angeles, CA 90095 USA
[3] Georgia Tech, Sch Math, Atlanta, GA 30332 USA
关键词
Stochastic Hamiltonian flow; Density manifold; Wong-Zakai approximation; SCHRODINGER-EQUATION; OPTIMAL TRANSPORT; APPROXIMATIONS; CONVERGENCE; DYNAMICS; SPACE;
D O I
10.1007/s10884-023-10264-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the stochastic Hamiltonian flow in Wasserstein manifold, the probability density space equipped with L-2-Wasserstein metric tensor, via the Wong-Zakai approximation. We begin our investigation by showing that the stochastic Euler-Lagrange equation, regardless it is deduced from either the variational principle or particle dynamics, can be interpreted as the stochastic kinetic Hamiltonian flows in Wasserstein manifold. We further propose a novel variational formulation to derive more general stochastic Wasserstein Hamiltonian flows, and demonstrate that this new formulation is applicable to various systems including the stochastic Schrodinger equation, Schrodinger equation with random dispersion, and Schrodinger bridge problem with common noise.
引用
收藏
页码:3885 / 3921
页数:37
相关论文
共 50 条
  • [21] ON GRADIENT STRUCTURES FOR MARKOV CHAINS AND THE PASSAGE TO WASSERSTEIN GRADIENT FLOWS
    Disser, Karoline
    Liero, Matthias
    NETWORKS AND HETEROGENEOUS MEDIA, 2015, 10 (02) : 233 - 253
  • [22] Straight line orbits in Hamiltonian flows
    Howard, J. E.
    Meiss, J. D.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2009, 105 (04) : 337 - 352
  • [23] Sliced-Wasserstein Distances and Flows on Cartan-Hadamard Manifolds
    Bonet, Clement
    Drumetz, Lucas
    Courty, Nicolas
    JOURNAL OF MACHINE LEARNING RESEARCH, 2025, 26 : 1 - 76
  • [24] What is a stochastic Hamiltonian process on finite graph? An optimal transport answer
    Cui, Jianbo
    Liu, Shu
    Zhou, Haomin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 305 : 428 - 457
  • [25] Approximate Wasserstein attraction flows for dynamic mass transport over networks
    Arque, Ferran
    Uribe, Cesar A.
    Ocampo-Martinez, Carlos
    AUTOMATICA, 2022, 143
  • [26] Recursive estimation for stochastic damping hamiltonian systems
    Cattiaux, P.
    Leon, Jose R.
    Prieur, C.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2015, 27 (03) : 401 - 424
  • [27] PROPAGATION OF CHAOS, WASSERSTEIN GRADIENT FLOWS AND TORIC KAHLER-EINSTEIN METRICS
    Berman, Robert J.
    Onnheim, Magnus
    ANALYSIS & PDE, 2018, 11 (06): : 1343 - 1380
  • [28] Variational integrators for stochastic dissipative Hamiltonian systems
    Kraus, Michael
    Tyranowski, Tomasz M.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (02) : 1318 - 1367
  • [29] Tangential Wasserstein Projections
    Gunsilius, Florian
    Hsieh, Meng Hsuan
    Lee, Myung Jin
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 41