Stochastic Wasserstein Hamiltonian Flows

被引:5
|
作者
Cui, Jianbo [1 ]
Liu, Shu [2 ]
Zhou, Haomin [3 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[2] UCLA, Dept Math, Los Angeles, CA 90095 USA
[3] Georgia Tech, Sch Math, Atlanta, GA 30332 USA
关键词
Stochastic Hamiltonian flow; Density manifold; Wong-Zakai approximation; SCHRODINGER-EQUATION; OPTIMAL TRANSPORT; APPROXIMATIONS; CONVERGENCE; DYNAMICS; SPACE;
D O I
10.1007/s10884-023-10264-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the stochastic Hamiltonian flow in Wasserstein manifold, the probability density space equipped with L-2-Wasserstein metric tensor, via the Wong-Zakai approximation. We begin our investigation by showing that the stochastic Euler-Lagrange equation, regardless it is deduced from either the variational principle or particle dynamics, can be interpreted as the stochastic kinetic Hamiltonian flows in Wasserstein manifold. We further propose a novel variational formulation to derive more general stochastic Wasserstein Hamiltonian flows, and demonstrate that this new formulation is applicable to various systems including the stochastic Schrodinger equation, Schrodinger equation with random dispersion, and Schrodinger bridge problem with common noise.
引用
收藏
页码:3885 / 3921
页数:37
相关论文
共 50 条
  • [11] Variational inference via Wasserstein gradient flows
    Lambert, Marc
    Chewi, Sinho
    Bach, Francis
    Bonnabel, Silvere
    Rigollet, Philippe
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [12] Backward and forward Wasserstein projections in stochastic order
    Kim, Young-Heon
    Ruan, Yuanlong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (02)
  • [13] Wasserstein Weight Estimation for Stochastic Petri Nets
    Brockhoff, Tobias
    Uysal, Merih Seran
    van der Aalst, Wil M. P.
    2024 6TH INTERNATIONAL CONFERENCE ON PROCESS MINING, ICPM, 2024, : 81 - 88
  • [14] Distributionally Robust Stochastic Optimization with Wasserstein Distance
    Gao, Rui
    Kleywegt, Anton
    MATHEMATICS OF OPERATIONS RESEARCH, 2023, 48 (02) : 603 - 655
  • [15] Stochastic gradient descent for barycenters in Wasserstein space
    Backhoff, Julio
    Fontbona, Joaquin
    Rios, Gonzalo
    Tobar, Felipe
    JOURNAL OF APPLIED PROBABILITY, 2025, 62 (01) : 15 - 43
  • [16] Hyperbolicity and stability for Hamiltonian flows
    Bessa, Mario
    Rocha, Jorge
    Torres, Maria Joana
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (01) : 309 - 322
  • [17] The back-and-forth method for Wasserstein gradient flows
    Jacobs, Matt
    Lee, Wonjun
    Leger, Flavien
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
  • [18] GRADIENT FLOWS FOR PROBABILISTIC FRAME POTENTIALS IN THE WASSERSTEIN SPACE
    Wickman, Clare
    Okoudjou, Kasso A.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (03) : 2324 - 2346
  • [19] A variational finite volume scheme for Wasserstein gradient flows
    Cances, Clement
    Gallouet, Thomas O.
    Todeschi, Gabriele
    NUMERISCHE MATHEMATIK, 2020, 146 (03) : 437 - 480
  • [20] FROM GEODESIC EXTRAPOLATION TO A VARIATIONAL BDF2 SCHEME FOR WASSERSTEIN GRADIENT FLOWS
    Gallouet, Thomas o.
    Natale, Andrea
    Todeschi, Gabriele
    MATHEMATICS OF COMPUTATION, 2024, 93 (350) : 2769 - 2810