Stochastic Wasserstein Hamiltonian Flows

被引:5
|
作者
Cui, Jianbo [1 ]
Liu, Shu [2 ]
Zhou, Haomin [3 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[2] UCLA, Dept Math, Los Angeles, CA 90095 USA
[3] Georgia Tech, Sch Math, Atlanta, GA 30332 USA
关键词
Stochastic Hamiltonian flow; Density manifold; Wong-Zakai approximation; SCHRODINGER-EQUATION; OPTIMAL TRANSPORT; APPROXIMATIONS; CONVERGENCE; DYNAMICS; SPACE;
D O I
10.1007/s10884-023-10264-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the stochastic Hamiltonian flow in Wasserstein manifold, the probability density space equipped with L-2-Wasserstein metric tensor, via the Wong-Zakai approximation. We begin our investigation by showing that the stochastic Euler-Lagrange equation, regardless it is deduced from either the variational principle or particle dynamics, can be interpreted as the stochastic kinetic Hamiltonian flows in Wasserstein manifold. We further propose a novel variational formulation to derive more general stochastic Wasserstein Hamiltonian flows, and demonstrate that this new formulation is applicable to various systems including the stochastic Schrodinger equation, Schrodinger equation with random dispersion, and Schrodinger bridge problem with common noise.
引用
收藏
页码:3885 / 3921
页数:37
相关论文
共 50 条
  • [1] Wasserstein Hamiltonian flows
    Chow, Shui-Nee
    Li, Wuchen
    Zhou, Haomin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (03) : 1205 - 1219
  • [2] WASSERSTEIN HAMILTONIAN FLOW WITH COMMON NOISE ON GRAPH
    Cui, Jianbo
    Liu, Shu
    Zhou, Haomin
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2023, 83 (02) : 484 - 509
  • [3] TIME DISCRETIZATIONS OF WASSERSTEIN-HAMILTONIAN FLOWS
    Cui, Jianbo
    Dieci, Luca
    Zhou, Haomin
    MATHEMATICS OF COMPUTATION, 2022, 91 (335) : 1019 - 1075
  • [4] Entropic Approximation of Wasserstein Gradient Flows
    Peyre, Gabriel
    SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (04): : 2323 - 2351
  • [5] Stochastic Wasserstein Barycenters
    Claici, Sebastian
    Chien, Edward
    Solomon, Justin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [6] Primal Dual Methods for Wasserstein Gradient Flows
    Carrillo, Jose A.
    Craig, Katy
    Wang, Li
    Wei, Chaozhen
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2022, 22 (02) : 389 - 443
  • [7] Extremal flows in Wasserstein space
    Conforti, Giovanni
    Pavon, Michele
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
  • [8] Fisher information regularization schemes for Wasserstein gradient flows
    Li, Wuchen
    Lu, Jianfeng
    Wang, Li
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 416
  • [9] {Euclidean, metric, and Wasserstein} gradient flows: an overview
    Santambrogio, Filippo
    BULLETIN OF MATHEMATICAL SCIENCES, 2017, 7 (01) : 87 - 154
  • [10] Primal Dual Methods for Wasserstein Gradient Flows
    José A. Carrillo
    Katy Craig
    Li Wang
    Chaozhen Wei
    Foundations of Computational Mathematics, 2022, 22 : 389 - 443