Mechanistic and quantitative profiling of electro-Fenton process for wastewater treatment

被引:37
作者
Wang, Anliu [1 ,2 ]
Jiang, Ying [1 ,2 ]
Yan, Yiqi [1 ,2 ]
Bu, Lingjun [3 ]
Wei, Zongsu [4 ,5 ]
Spinney, Richard [6 ]
Dionysiou, Dionysios D. [7 ]
Xiao, Ruiyang [1 ,2 ]
机构
[1] Cent South Univ, Inst Environm Engn, Sch Met & Environm, Changsha 410083, Peoples R China
[2] Chinese Natl Engn Res Ctr Control & Treatment Heav, Changsha 410083, Peoples R China
[3] Hunan Univ, Coll Civil Engn, Hunan Engn Res Ctr Water Secur Technol & Applicat, Changsha 410082, Peoples R China
[4] Aarhus Univ, Ctr Water Technol WATEC, Norrebrogade 44, DK-8000 Aarhus C, Denmark
[5] Aarhus Univ, Dept Biol & Chem Engn, Norrebrogade 44, DK-8000 Aarhus C, Denmark
[6] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA
[7] Univ Cincinnati, Environm Engn & Sci Program, Cincinnati, OH 45221 USA
基金
中国国家自然科学基金;
关键词
Advanced oxidation processes; Electro-Fenton; Micropollutant; Profiling; Degradation kinetics; ADVANCED OXIDATION PROCESSES; ACTIVATED CARBON FELT; HYDROGEN-PEROXIDE; HYDROXYL RADICALS; PHENOL; REMOVAL; PERFORMANCE; REDUCTION; NITROBENZENE; DEGRADATION;
D O I
10.1016/j.watres.2023.119838
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Electro-Fenton (EF) process represents an energy-efficient and scalable advanced oxidation technology (AOT) for micropollutants removal in wastewaters. However, mechanistic profiling and quantitation of contribution of each subprocess (i.e., adsorption at electrode, coagulation, radical oxidation, electrode oxidation/reduction, and H2O2 oxidation) to the overall degradation are substantially unclear, resulting in difficulty in tunability and optimization for different treatment scenarios. In this study, we investigated degradation kinetics of a target micropollutant in an EF system. The contribution of all possible subprocesses was elucidated by comparing the observed degradation rate in the EF system with the sum of the kinetics in each subprocess. The results indicated that the overall degradation can be attributed to the synergistic action of the above-mentioned subprocesses. The radical oxidation accounts for 87% elimination, followed by electrode reoxidation/reduction of 7.7%. These results not only advance the fundamental understanding of synergistic effect in EF system, but also open new possibilities to optimize these techniques for better scalability. In addition, the methodology in this study could potentially boost the in-depth exploration of subprocess contribution in other Fenton-like systems.
引用
收藏
页数:8
相关论文
共 53 条
[1]   Removal of phenol, phenoxide and chlorophenols from waste-waters by adsorption and electrosorption at high-area carbon felt electrodes [J].
Ayranci, E ;
Conway, BE .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 513 (02) :100-110
[2]   A review on Fenton and improvements to the Fenton process for wastewater treatment [J].
Babuponnusami, Arjunan ;
Muthukumar, Karuppan .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2014, 2 (01) :557-572
[3]   Mechanistic Understanding of Superoxide Radical-Mediated Degradation of Perfluorocarboxylic Acids [J].
Bai, Lu ;
Jiang, Ying ;
Xia, Deming ;
Wei, Zongsu ;
Spinney, Richard ;
Dionysiou, Dionysios D. ;
Minakata, Daisuke ;
Xiao, Ruiyang ;
Xie, Hong-Bin ;
Chai, Liyuan .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (01) :624-633
[4]  
Bard A., 1985, STANDARD POTENTIALS
[5]   Electrochemically Enhanced Removal of Polycyclic Aromatic Basic Dyes from Dilute Aqueous Solutions by Activated Carbon Cloth Electrodes [J].
Bayram, Edip ;
Ayranci, Erol .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (16) :6331-6336
[6]   REACTIVITY OF HO2/O-2 RADICALS IN AQUEOUS-SOLUTION [J].
BIELSKI, BHJ ;
CABELLI, DE ;
ARUDI, RL ;
ROSS, AB .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1985, 14 (04) :1041-1100
[8]   Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton's Reaction Chemistry [J].
Brillas, Enric ;
Sires, Ignasi ;
Oturan, Mehmet A. .
CHEMICAL REVIEWS, 2009, 109 (12) :6570-6631
[9]   CRITICAL-REVIEW OF RATE CONSTANTS FOR REACTIONS OF HYDRATED ELECTRONS, HYDROGEN-ATOMS AND HYDROXYL RADICALS (.OH/.O-) IN AQUEOUS-SOLUTION [J].
BUXTON, GV ;
GREENSTOCK, CL ;
HELMAN, WP ;
ROSS, AB .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1988, 17 (02) :513-886
[10]   Oxidation of phenols by triplet aromatic ketones in aqueous solution [J].
Canonica, S ;
Hellrung, B ;
Wirz, J .
JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (06) :1226-1232