CMOS-compatible electrochemical synaptic transistor arrays for deep learning accelerators

被引:76
作者
Cui, Jinsong [1 ]
An, Fufei [1 ]
Qian, Jiangchao [1 ]
Wu, Yuxuan [1 ]
Sloan, Luke L. [1 ]
Pidaparthy, Saran [1 ]
Zuo, Jian-Min [1 ,2 ]
Cao, Qing [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61820 USA
[2] Univ Illinois, Fredrick Seitz Mat Res Lab, Urbana, IL 61820 USA
[3] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61820 USA
[4] Univ Illinois, Dept Chem, Urbana, IL 61820 USA
[5] Univ Illinois, Holonyak Micro & Nanotechnol Lab, Urbana, IL 61820 USA
基金
美国国家科学基金会;
关键词
MEMORY; TEMPERATURE;
D O I
10.1038/s41928-023-00939-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In-memory computing architectures based on memristive crossbar arrays could offer higher computing efficiency than traditional hardware in deep learning applications. However, the core memory devices must be capable of performing high-speed and symmetric analogue programming with small variability. They should also be compatible with silicon technology and scalable to nanometre-sized footprints. Here we report an electrochemical synaptic transistor that operates by shuffling protons between a hydrogenated tungsten oxide channel and gate through a zirconium dioxide protonic electrolyte. These devices offer multistate and symmetric programming of channel conductance via gate-voltage pulse control and small cycle-to-cycle variation. They can be programmed at frequencies approaching the megahertz range and exhibit endurances of over 100 million read-write cycles. They are also compatible with complementary metal-oxide-semiconductor technology and can be scaled to lateral dimensions of 150 x 150 nm(2). Through monolithic integration with silicon transistors, we show that pseudo-crossbar arrays can be created for area- and energy-efficient deep learning accelerator applications. Oxide-based solid-state protonic electrochemical transistors that have symmetric operation and are compatible with CMOS technology can be used to create crossbar arrays for deep learning applications.
引用
收藏
页码:292 / +
页数:19
相关论文
共 47 条
[1]   Equivalent-accuracy accelerated neural-network training using analogue memory [J].
Ambrogio, Stefano ;
Narayanan, Pritish ;
Tsai, Hsinyu ;
Shelby, Robert M. ;
Boybat, Irem ;
di Nolfo, Carmelo ;
Sidler, Severin ;
Giordano, Massimo ;
Bodini, Martina ;
Farinha, Nathan C. P. ;
Killeen, Benjamin ;
Cheng, Christina ;
Jaoudi, Yassine ;
Burr, Geoffrey W. .
NATURE, 2018, 558 (7708) :60-+
[2]  
Anthony L. F. W., 2020, PREPRINT
[3]  
Bishop D M., 2018, INT C SOL STAT DEV M, pp 23
[4]   NeuroSim: A Circuit-Level Macro Model for Benchmarking Neuro-Inspired Architectures in Online Learning [J].
Chen, Pai-Yu ;
Peng, Xiaochen ;
Yu, Shimeng .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2018, 37 (12) :3067-3080
[5]   SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations [J].
Choi, Shinhyun ;
Tan, Scott H. ;
Li, Zefan ;
Kim, Yunjo ;
Choi, Chanyeol ;
Chen, Pai-Yu ;
Yeon, Hanwool ;
Yu, Shimeng ;
Kim, Jeehwan .
NATURE MATERIALS, 2018, 17 (04) :335-+
[6]   Phase-change heterostructure enables ultralow noise and drift for memory operation [J].
Ding, Keyuan ;
Wang, Jiangjing ;
Zhou, Yuxing ;
Tian, He ;
Lu, Lu ;
Mazzarello, Riccardo ;
Jia, Chunlin ;
Zhang, Wei ;
Rao, Feng ;
Ma, Evan .
SCIENCE, 2019, 366 (6462) :210-+
[7]   Adaptive and noncyclic preventive maintenance to augment production activities [J].
Dutta, Sunil ;
Reddy, Narala Suresh Kumar .
JOURNAL OF QUALITY IN MAINTENANCE ENGINEERING, 2021, 27 (01) :92-106
[8]   Redox transistors for neuromorphic computing [J].
Fuller, E. J. ;
Li, Y. ;
Bennet, C. ;
Keene, S. T. ;
Melianas, A. ;
Agarwal, S. ;
Marinella, M. J. ;
Salleo, A. ;
Talin, A. A. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2019, 63 (06)
[9]   Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing [J].
Fuller, Elliot J. ;
Keene, Scott T. ;
Melianas, Armantas ;
Wang, Zhongrui ;
Agarwal, Sapan ;
Li, Yiyang ;
Tuchman, Yaakov ;
James, Conrad D. ;
Marinella, Matthew J. ;
Yang, J. Joshua ;
Salleo, Alberto ;
Talin, A. Alec .
SCIENCE, 2019, 364 (6440) :570-+
[10]   Li-Ion Synaptic Transistor for Low Power Analog Computing [J].
Fuller, Elliot J. ;
El Gabaly, Farid ;
Leonard, Franois ;
Agarwal, Sapan ;
Plimpton, Steven J. ;
Jacobs-Gedrim, Robin B. ;
James, Conrad D. ;
Marinella, Matthew J. ;
Talin, A. Alec .
ADVANCED MATERIALS, 2017, 29 (04)