A multi-modal pre-training transformer for universal transfer learning in metal-organic frameworks

被引:114
作者
Kang, Yeonghun [1 ]
Park, Hyunsoo [1 ]
Smit, Berend [2 ]
Kim, Jihan [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Daejeon, South Korea
[2] Ecole Polytech Fed Lausanne, Inst Sci & Ingn Chim, Lab Mol simulat, Sion, Switzerland
基金
新加坡国家研究基金会;
关键词
ALGORITHMS;
D O I
10.1038/s42256-023-00628-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Metal-organic frameworks (MOFs) are a class of crystalline porous materials that exhibit a vast chemical space owing to their tunable molecular building blocks with diverse topologies. An unlimited number of MOFs can, in principle, be synthesized. Machine learning approaches can help to explore this vast chemical space by identifying optimal candidates with desired properties from structure-property relationships. Here we introduce MOFTransformer, a multi-modal Transformer encoder pre-trained with 1 million hypothetical MOFs. This multi-modal model utilizes integrated atom-based graph and energy-grid embeddings to capture both local and global features of MOFs, respectively. By fine-tuning the pre-trained model with small datasets ranging from 5,000 to 20,000 MOFs, our model achieves state-of-the-art results for predicting across various properties including gas adsorption, diffusion, electronic properties, and even text-mined data. Beyond its universal transfer learning capabilities, MOFTransformer generates chemical insights by analyzing feature importance through attention scores within the self-attention layers. As such, this model can serve as a platform for other MOF researchers that seek to develop new machine learning models for their work. Metal-organic frameworks are of high interest for a range of energy and environmental applications due to their stable gas storage properties. A new machine learning approach based on a pre-trained multi-modal transformer can be fine-tuned with small datasets to predict structure-property relationships and design new metal-organic frameworks for a range of specific tasks.
引用
收藏
页码:309 / 318
页数:10
相关论文
共 55 条
[1]   Predicting hydrogen storage in MOFs via machine learning [J].
Ahmed, Alauddin ;
Siegel, Donald J. .
PATTERNS, 2021, 2 (07)
[2]   Machine Learning Meets with Metal Organic Frameworks for Gas Storage and Separation [J].
Altintas, Cigdem ;
Altundal, Omer Faruk ;
Keskin, Seda ;
Yildirim, Ramazan .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (05) :2131-2146
[3]   Data-driven design of metal-organic frameworks for wet flue gas CO2 capture [J].
Boyd, Peter G. ;
Chidambaram, Arunraj ;
Garcia-Diez, Enrique ;
Ireland, Christopher P. ;
Daff, Thomas D. ;
Bounds, Richard ;
Gladysiak, Andrzej ;
Schouwink, Pascal ;
Moosavi, Seyed Mohamad ;
Maroto-Valer, M. Mercedes ;
Reimer, Jeffrey A. ;
Navarro, Jorge A. R. ;
Woo, Tom K. ;
Garcia, Susana ;
Stylianou, Kyriakos C. ;
Smit, Berend .
NATURE, 2019, 576 (7786) :253-+
[4]   Energy-based descriptors to rapidly predict hydrogen storage in metal-organic frameworks [J].
Bucior, Benjamin J. ;
Bobbitt, N. Scott ;
Islamoglu, Timur ;
Goswami, Subhadip ;
Gopalan, Arun ;
Yildirim, Taner ;
Farha, Omar K. ;
Bagheri, Neda ;
Snurr, Randall Q. .
MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2019, 4 (01) :162-174
[5]  
Cao Zhonglin., 2022, arXiv, DOI DOI 10.48550/ARXIV.2210.14188
[6]   Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals [J].
Chen, Chi ;
Ye, Weike ;
Zuo, Yunxing ;
Zheng, Chen ;
Ong, Shyue Ping .
CHEMISTRY OF MATERIALS, 2019, 31 (09) :3564-3572
[7]   Interpretable Graph Transformer Network for Predicting Adsorption Isotherms of Metal-Organic Frameworks [J].
Chen, Pin ;
Jiao, Rui ;
Liu, Jinyu ;
Liu, Yang ;
Lu, Yutong .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (22) :5446-5456
[8]   Applications of machine learning in metal-organic frameworks [J].
Chong, Sanggyu ;
Lee, Sangwon ;
Kim, Baekjun ;
Kim, Jihan .
COORDINATION CHEMISTRY REVIEWS, 2020, 423
[9]   Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal-Organic Framework Database: CoRE MOF 2019 [J].
Chung, Yongchul G. ;
Haldoupis, Emmanuel ;
Bucior, Benjamin J. ;
Haranczyk, Maciej ;
Lee, Seulchan ;
Zhang, Hongda ;
Vogiatzis, Konstantinos D. ;
Milisavljevic, Marija ;
Ling, Sanliang ;
Camp, Jeffrey S. ;
Slater, Ben ;
Siepmann, J. Ilja ;
Sholl, David S. ;
Snurr, Randall Q. .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2019, 64 (12) :5985-5998
[10]   Topologically Guided, Automated Construction of Metal-Organic Frameworks and Their Evaluation for Energy-Related Applications [J].
Colon, Yamil J. ;
Gomez-Gualdron, Diego A. ;
Snurr, Randall Q. .
CRYSTAL GROWTH & DESIGN, 2017, 17 (11) :5801-5810