Probabilistic predictions for partial least squares using bootstrap

被引:5
作者
Odgers, James [1 ]
Kappatou, Chrysoula [1 ]
Misener, Ruth [1 ]
Munoz, Salvador Garcia [2 ]
Filippi, Sarah [3 ]
机构
[1] Imperial Coll London, Dept Comp, Computat Optimisat Grp, London, England
[2] Eli Lilly & Co, Lilly Res Labs, Synthet Mol Design & Dev, Indianapolis, IN USA
[3] Imperial Coll London, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Design Space identification; model uncertainty; partial least squares; PLS; probabilistic prediction; DESIGN SPACE DETERMINATION; UNCERTAINTY ESTIMATION; REGRESSION; METHODOLOGY; INVERSION;
D O I
10.1002/aic.18071
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Modeling the uncertainty in partial least squares (PLS) is made difficult because of the nonlinear effect of the observed data on the latent space that the method finds. We present an approach, based on bootstrapping, that automatically accounts for these nonlinearities in the parameter uncertainty, allowing us to equally well represent confidence intervals for points lying close to or far away from the latent space. To show the opportunities of this approach, we develop applications in determining the Design Space for industrial processes and model the uncertainty of spectroscopy data. Our results show the benefits of our method for accounting for uncertainty far from the latent space for the purposes of Design Space identification, and match the performance of well established methods for spectroscopy data.
引用
收藏
页数:16
相关论文
共 44 条
[1]   Probabilistic Design space determination in pharmaceutical product development: A Bayesian/latent variable approach [J].
Bano, Gabriele ;
Facco, Pierantonio ;
Bezzo, Fabrizio ;
Barolo, Massimiliano .
AICHE JOURNAL, 2018, 64 (07) :2438-2449
[2]   Uncertainty back-propagation in PLS model inversion for design space determination in pharmaceutical product development [J].
Bano, Gabriele ;
Facco, Pierantonio ;
Meneghetti, Natascia ;
Bezzo, Fabrizio ;
Barolo, Massimiliano .
COMPUTERS & CHEMICAL ENGINEERING, 2017, 101 :110-124
[3]   PLS works [J].
Bro, R. ;
Elden, L. .
JOURNAL OF CHEMOMETRICS, 2009, 23 (1-2) :69-71
[4]   Bayesian latent variable regression via Gibbs sampling: methodology and practical aspects [J].
Chen, Hongshu ;
Bakshi, Bhavik R. ;
Goel, Prem K. .
JOURNAL OF CHEMOMETRICS, 2007, 21 (12) :578-591
[5]   SIMPLS - AN ALTERNATIVE APPROACH TO PARTIAL LEAST-SQUARES REGRESSION [J].
DEJONG, S .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1993, 18 (03) :251-263
[6]   Bayesian predictive optimization of multiple and profile response systems in the process industry: A review and extensions [J].
del Castillo, Enrique ;
Reis, Marco S. .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2020, 206
[7]  
Denham MC, 1997, J CHEMOMETR, V11, P39, DOI 10.1002/(SICI)1099-128X(199701)11:1<39::AID-CEM433>3.3.CO
[8]  
2-J
[9]   A LEISURELY LOOK AT THE BOOTSTRAP, THE JACKKNIFE, AND CROSS-VALIDATION [J].
EFRON, B ;
GONG, G .
AMERICAN STATISTICIAN, 1983, 37 (01) :36-48
[10]   Probabilistic partial least squares model: Identifiability, estimation and application [J].
el Bouhaddani, Said ;
Uh, Hae-Won ;
Hayward, Caroline ;
Jongbloed, Geurt ;
Houwing-Duistermaat, Jeanine .
JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 167 :331-346