Enhancing Multimodal Patterns in Neuroimaging by Siamese Neural Networks with Self-Attention Mechanism

被引:14
|
作者
Arco, Juan E. [1 ,2 ,3 ]
Ortiz, Andres [2 ,3 ]
Gallego-Molina, Nicolas J. [2 ,3 ]
Gorriz, Juan M. [1 ,3 ]
Ramirez, Javier [1 ,3 ]
机构
[1] Univ Granada, Dept Signal Theory Networking & Commun, Granada 18010, Spain
[2] Univ Malaga, Dept Commun Engn, Malaga 29010, Spain
[3] Andalusian Res Inst Data Sci & Computat Intellige, Granada, Spain
关键词
Multimodal combination; siamese neural network; self-attention; deep learning; medical imaging; ALZHEIMERS-DISEASE; FUNCTIONAL CONNECTIVITY; MATTER LOSS; DIAGNOSIS; FUSION; MULTISCALE; MRI;
D O I
10.1142/S0129065723500193
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The combination of different sources of information is currently one of the most relevant aspects in the diagnostic process of several diseases. In the field of neurological disorders, different imaging modalities providing structural and functional information are frequently available. Those modalities are usually analyzed separately, although a joint of the features extracted from both sources can improve the classification performance of Computer-Aided Diagnosis (CAD) tools. Previous studies have computed independent models from each individual modality and combined them in a subsequent stage, which is not an optimum solution. In this work, we propose a method based on the principles of siamese neural networks to fuse information from Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). This framework quantifies the similarities between both modalities and relates them with the diagnostic label during the training process. The resulting latent space at the output of this network is then entered into an attention module in order to evaluate the relevance of each brain region at different stages of the development of Alzheimer's disease. The excellent results obtained and the high flexibility of the method proposed allow fusing more than two modalities, leading to a scalable methodology that can be used in a wide range of contexts.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Self-Attention Networks for Human Activity Recognition Using Wearable Devices
    Betancourt, Carlos
    Chen, Wen-Hui
    Kuan, Chi-Wei
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 1194 - 1199
  • [42] Self-attention Based Collaborative Neural Network for Recommendation
    Ma, Shengchao
    Zhu, Jinghua
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2019, 2019, 11604 : 235 - 246
  • [43] Aspect Based Sentiment Analysis with Self-Attention and Gated Convolutional Networks
    Yang, Jian
    Yang, Juan
    PROCEEDINGS OF 2020 IEEE 11TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2020), 2020, : 146 - 149
  • [44] ERSA-Net: Encoder Networks based on Residuals and Self-Attention for Accelerating MRI Reconstruction
    Zheng, Jin
    Zou, Hao
    Qiu, Huaqiao
    Zhou, Ziyi
    Li, Xiaoran
    Fu, Xiaofeng
    Zhu, Ying
    2024 16TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING, ICCAE 2024, 2024, : 472 - 477
  • [45] Paying attention to cyber-attacks: A multi-layer perceptron with self-attention mechanism
    Rendon-Segador, Fernando J.
    Alvarez-Garcia, Juan A.
    Varela-Vaca, Angel Jesus
    COMPUTERS & SECURITY, 2023, 132
  • [46] Predicting Esophageal Fistula Risks Using a Multimodal Self-attention Network
    Guan, Yulu
    Cui, Hui
    Xu, Yiyue
    Jin, Qiangguo
    Feng, Tian
    Tu, Huawei
    Xuan, Ping
    Li, Wanlong
    Wang, Linlin
    Duh, Been-Lirn
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT V, 2021, 12905 : 721 - 730
  • [47] MULTIMODAL CROSS- AND SELF-ATTENTION NETWORK FOR SPEECH EMOTION RECOGNITION
    Sun, Licai
    Liu, Bin
    Tao, Jianhua
    Lian, Zheng
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 4275 - 4279
  • [48] Hashtag Recommendation Using LSTM Networks with Self-Attention
    Shen, Yatian
    Li, Yan
    Sun, Jun
    Ding, Wenke
    Shi, Xianjin
    Zhang, Lei
    Shen, Xiajiong
    He, Jing
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 61 (03): : 1261 - 1269
  • [49] SACall: A Neural Network Basecaller for Oxford Nanopore Sequencing Data Based on Self-Attention Mechanism
    Huang, Neng
    Nie, Fan
    Ni, Peng
    Luo, Feng
    Wang, Jianxin
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (01) : 614 - 623
  • [50] Smart Contract Vulnerability Detection Based on Multi Graph Convolutional Neural Networks with Self-attention
    Li, Jiale
    Yu, Xiao
    Yu, Jie
    Sun, Haoxin
    Sun, Mengdi
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14864 : 319 - 330