Enhancing Multimodal Patterns in Neuroimaging by Siamese Neural Networks with Self-Attention Mechanism

被引:14
|
作者
Arco, Juan E. [1 ,2 ,3 ]
Ortiz, Andres [2 ,3 ]
Gallego-Molina, Nicolas J. [2 ,3 ]
Gorriz, Juan M. [1 ,3 ]
Ramirez, Javier [1 ,3 ]
机构
[1] Univ Granada, Dept Signal Theory Networking & Commun, Granada 18010, Spain
[2] Univ Malaga, Dept Commun Engn, Malaga 29010, Spain
[3] Andalusian Res Inst Data Sci & Computat Intellige, Granada, Spain
关键词
Multimodal combination; siamese neural network; self-attention; deep learning; medical imaging; ALZHEIMERS-DISEASE; FUNCTIONAL CONNECTIVITY; MATTER LOSS; DIAGNOSIS; FUSION; MULTISCALE; MRI;
D O I
10.1142/S0129065723500193
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The combination of different sources of information is currently one of the most relevant aspects in the diagnostic process of several diseases. In the field of neurological disorders, different imaging modalities providing structural and functional information are frequently available. Those modalities are usually analyzed separately, although a joint of the features extracted from both sources can improve the classification performance of Computer-Aided Diagnosis (CAD) tools. Previous studies have computed independent models from each individual modality and combined them in a subsequent stage, which is not an optimum solution. In this work, we propose a method based on the principles of siamese neural networks to fuse information from Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). This framework quantifies the similarities between both modalities and relates them with the diagnostic label during the training process. The resulting latent space at the output of this network is then entered into an attention module in order to evaluate the relevance of each brain region at different stages of the development of Alzheimer's disease. The excellent results obtained and the high flexibility of the method proposed allow fusing more than two modalities, leading to a scalable methodology that can be used in a wide range of contexts.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Conversational Emotion Recognition Using Self-Attention Mechanisms and Graph Neural Networks
    Lian, Zheng
    Tao, Jianhua
    Liu, Bin
    Huang, Jian
    Yang, Zhanlei
    Li, Rongjun
    INTERSPEECH 2020, 2020, : 2347 - 2351
  • [32] Unsupervised Pansharpening Based on Self-Attention Mechanism
    Qu, Ying
    Baghbaderani, Razieh Kaviani
    Qi, Hairong
    Kwan, Chiman
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (04): : 3192 - 3208
  • [33] Improving Self-Attention Networks With Sequential Relations
    Zheng, Zaixiang
    Huang, Shujian
    Weng, Rongxiang
    Dai, Xinyu
    Chen, Jiajun
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2020, 28 : 1707 - 1716
  • [34] A fine-grained classification method based on self-attention Siamese network
    He Can
    Yuan Guowu
    Wu Hao
    2021 THE 5TH INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING, ICVIP 2021, 2021, : 148 - 154
  • [35] Binary Function Similarity Detection Based on Graph Neural Network with Self-Attention Mechanism
    Wu, Dingjie
    He, Xuanzhang
    Zhang, Yao
    Zhu, Junjie
    Zhang, Xinyuan
    Ye, Minchao
    Gao, Zhigang
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 971 - 975
  • [36] DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks
    Sankar, Aravind
    Wu, Yanhong
    Gou, Liang
    Zhang, Wei
    Yang, Hao
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), 2020, : 519 - 527
  • [37] Enhancing small object detection in point clouds with self-attention voting network
    Zhu, Minghao
    Wang, Gaihua
    Li, Mingjie
    Long, Qian
    Zhou, Zhengshu
    OPTICAL ENGINEERING, 2024, 63 (04)
  • [38] Generative Adversarial Networks for Abnormal Event Detection in Videos Based on Self-Attention Mechanism
    Zhang, Weichao
    Wang, Guanjun
    Huang, Mengxing
    Wang, Hongyu
    Wen, Shaoping
    IEEE ACCESS, 2021, 9 : 124847 - 124860
  • [39] A Study on the Classification of Cancers with Lung Cancer Pathological Images Using Deep Neural Networks and Self-Attention Structures
    Kim, Seung Hyun
    Kang, Ho Chul
    JOURNAL OF POPULATION THERAPEUTICS AND CLINICAL PHARMACOLOGY, 2023, 30 (06): : E374 - E383
  • [40] Action Identification Without Bounds on Applications Based on Self-Attention Mechanism
    Wang C.
    Wei Z.
    Chen S.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (05): : 1092 - 1104