Study on the bonding performance between basalt textile and concrete under freeze-thaw cycles

被引:10
|
作者
Cai, Shixing [1 ]
Lin, Jianhong [2 ]
Fan, Kaifang [1 ]
Chen, Yuanyi [3 ]
Wang, Zeping [4 ]
机构
[1] Nanjing Hydraul Res Inst, Geotech Engn Dept, Nanjing 210024, Jiangsu, Peoples R China
[2] China Water Northeastern Invest Design & Res Co Lt, Changchun 130061, Jilin, Peoples R China
[3] Anhui Univ Finance & Econ, Sch Management Sci & Engn, Bengbu 233030, Peoples R China
[4] Changchun Municipal Engn & Res Inst Co Ltd, Changchun 130061, Jilin, Peoples R China
关键词
Basalt textile-reinforced concrete; Freeze-thaw cycles; Bonding performance; Tensile and flexural characteristic; Strength degradation; REINFORCED-CONCRETE; MECHANICAL-PROPERTIES; FLEXURAL BEHAVIOR; TENSILE;
D O I
10.1016/j.engfailanal.2023.107095
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Basalt textile-reinforced concrete (BTRC) is an environment friendly building material attracted wide attention in civil engineering. The investigation of the durability characteristic of the BTRC specimen is an important part of guiding the design of BTRC. In this paper, the tensile and flexural performances were investigated by the pull-out test and the four-point bending test with BTRC specimens under different freeze-thaw conditions. Meanwhile, the scanning electron microscope (SEM) is employed in the micro-cracks and bonding performance analysis. The results showed that as the number of freeze-thaw cycles increased, the peak and residual bonding stress are reduced, and the same for the ultimate flexural loading. The paper presents the formulas for calculating the ultimate flexural strength of BTRC under freeze-thaw cycles, and the difference in calculating results is less than 12% of the experimental results. The SEM images are shown that as the number of freeze-thaw cycles increased, the gap between the bonding surface was widened, which also well explains the degradation of bonding performance between fiber bundles and concrete matrix. And the normalized strength degradation law satisfies the function relation well.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Experimental and theoretical investigations on the damage evolution of the basalt fiber reinforced concrete under freeze-thaw cycles
    Zhang, Jiguang
    Guan, Youhai
    Fan, Changqi
    Cao, Gongqi
    Liu, Jianlin
    Construction and Building Materials, 2024, 422
  • [22] Study on the strength size effect of wastewater concrete under freeze-thaw cycles
    Guan, Junfeng
    Liu, Li
    Yao, Xianhua
    Meng, Jiangfeng
    Han, Linyan
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 438
  • [23] Study of Damage Mechanism and Evolution Model of Concrete under Freeze-Thaw Cycles
    Zhao, Ning
    Lian, Shuailong
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [24] Experimental study on the dynamic mechanical properties of concrete under freeze-thaw cycles
    Han, Nv
    Tian, Wei
    STRUCTURAL CONCRETE, 2018, 19 (05) : 1353 - 1362
  • [25] Bonding Performances of Ultra High Performance Concrete to Normal Concrete Under Freeze-Thaw Cycle
    Yu Z.
    Shen J.
    Jia F.
    An M.
    Cailiao Daobao/Materials Review, 2017, 31 (12): : 138 - 144and176
  • [26] Fatigue performance and fatigue equation of crumb rubber concrete under freeze-thaw cycles
    Xue, Gang
    Zhu, Haojun
    Xu, Sheng
    Dong, Wei
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 168
  • [27] Study on resistance of basalt fiber reinforced concrete to sulfate erosion after cryogenic freeze-thaw cycles
    Li, Yang
    Ye, Lingfeng
    Gu, Zhicong
    Liu, Yaodong
    JOURNAL OF BUILDING ENGINEERING, 2024, 98
  • [28] Microcrack Propagation of Basalt Fiber Reinforced Pavement Concrete under Wheel Load and Freeze-Thaw Cycles Coupling
    Li, Zhennan
    Shen, Aiqin
    Dai, Xiaoqian
    Wang, Xiushan
    Zheng, Panfei
    JOURNAL OF TESTING AND EVALUATION, 2025,
  • [29] Microcrack Propagation of Basalt Fiber Reinforced Pavement Concrete under Wheel Load and Freeze-Thaw Cycles Coupling
    Li, Zhennan
    Shen, Aiqin
    Dai, Xiaoqian
    Wang, Xiushan
    Zheng, Panfei
    JOURNAL OF TESTING AND EVALUATION, 2025,
  • [30] Study on the deterioration mechanism of hybrid basalt-polypropylene fiber-reinforced concrete under sulfate freeze-thaw cycles
    Huang, Guansong
    Su, Li
    Xue, Cuizhen
    Zhang, Yunsheng
    Qiao, Hongxia
    Wang, Chenming
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 449