Study on the bonding performance between basalt textile and concrete under freeze-thaw cycles

被引:10
|
作者
Cai, Shixing [1 ]
Lin, Jianhong [2 ]
Fan, Kaifang [1 ]
Chen, Yuanyi [3 ]
Wang, Zeping [4 ]
机构
[1] Nanjing Hydraul Res Inst, Geotech Engn Dept, Nanjing 210024, Jiangsu, Peoples R China
[2] China Water Northeastern Invest Design & Res Co Lt, Changchun 130061, Jilin, Peoples R China
[3] Anhui Univ Finance & Econ, Sch Management Sci & Engn, Bengbu 233030, Peoples R China
[4] Changchun Municipal Engn & Res Inst Co Ltd, Changchun 130061, Jilin, Peoples R China
关键词
Basalt textile-reinforced concrete; Freeze-thaw cycles; Bonding performance; Tensile and flexural characteristic; Strength degradation; REINFORCED-CONCRETE; MECHANICAL-PROPERTIES; FLEXURAL BEHAVIOR; TENSILE;
D O I
10.1016/j.engfailanal.2023.107095
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Basalt textile-reinforced concrete (BTRC) is an environment friendly building material attracted wide attention in civil engineering. The investigation of the durability characteristic of the BTRC specimen is an important part of guiding the design of BTRC. In this paper, the tensile and flexural performances were investigated by the pull-out test and the four-point bending test with BTRC specimens under different freeze-thaw conditions. Meanwhile, the scanning electron microscope (SEM) is employed in the micro-cracks and bonding performance analysis. The results showed that as the number of freeze-thaw cycles increased, the peak and residual bonding stress are reduced, and the same for the ultimate flexural loading. The paper presents the formulas for calculating the ultimate flexural strength of BTRC under freeze-thaw cycles, and the difference in calculating results is less than 12% of the experimental results. The SEM images are shown that as the number of freeze-thaw cycles increased, the gap between the bonding surface was widened, which also well explains the degradation of bonding performance between fiber bundles and concrete matrix. And the normalized strength degradation law satisfies the function relation well.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Influence of Steel Fiber on Durability Performance of Concrete under Freeze-Thaw Cycles
    Li, Dong
    Guo, Qing
    Liu, Shi
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2021, 2021
  • [2] Research on the performance of concrete materials under the condition of freeze-thaw cycles
    Zhang, S.
    Zhao, B.
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2013, 17 (09) : 860 - 871
  • [3] Study on the strength size effect of wastewater concrete under freeze-thaw cycles
    Guan, Junfeng
    Liu, Li
    Yao, Xianhua
    Meng, Jiangfeng
    Han, Linyan
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 438
  • [4] Experimental study on the bond performance between ultra-high performance concrete and steel bar under freeze-thaw cycles
    Wang, Dehong
    Liu, Kehan
    Kang, Mengxin
    Han, Lei
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 20
  • [5] Study on the Dynamic Fracture Properties of Defective Basalt Fiber Concrete Materials Under a Freeze-Thaw Environment
    Pei, Guangzhao
    Xiao, Dingjun
    Zhang, Miaomiao
    Jiang, Jiajie
    Xie, Jiping
    Li, Xiongzi
    Guo, Junbo
    MATERIALS, 2024, 17 (24)
  • [6] Mitigating freeze-thaw deterioration of bridge deck concrete under fatigue load and freeze-thaw coupling by chopped basalt fibers
    Wu, Jinhua
    Guo, Yinchuan
    Yao, Chao
    Li, Qidong
    Shen, Aiqin
    Jiao, Zhihao
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2025, 26 (01)
  • [7] Microcrack Propagation of Basalt Fiber Reinforced Pavement Concrete under Wheel Load and Freeze-Thaw Cycles Coupling
    Li, Zhennan
    Shen, Aiqin
    Dai, Xiaoqian
    Wang, Xiushan
    Zheng, Panfei
    JOURNAL OF TESTING AND EVALUATION, 2025,
  • [8] Microcrack Propagation of Basalt Fiber Reinforced Pavement Concrete under Wheel Load and Freeze-Thaw Cycles Coupling
    Li, Zhennan
    Shen, Aiqin
    Dai, Xiaoqian
    Wang, Xiushan
    Zheng, Panfei
    JOURNAL OF TESTING AND EVALUATION, 2025,
  • [9] Corrosion cracking behavior of reinforced concrete under freeze-thaw cycles
    Liu, Xiguang
    Yan, Ziwei
    Wang, Dongjing
    Zhao, Rong
    Niu, Ditao
    Wang, Yan
    JOURNAL OF BUILDING ENGINEERING, 2023, 64
  • [10] Seismic performance of reinforced concrete columns after freeze-thaw cycles
    Xu, Shanhua
    Li, Anbang
    Ji, Zengyang
    Wang, Yan
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 102 : 861 - 871