Optimal Trained Deep Learning Model for Breast Cancer Segmentation and Classification

被引:12
|
作者
Krishnakumar, B. [1 ]
Kousalya, K. [1 ]
机构
[1] Kongu Engn Coll, Dept Comp Sci & Engn, Perundurai 638060, India
来源
INFORMATION TECHNOLOGY AND CONTROL | 2023年 / 52卷 / 04期
关键词
Deep Learning; Healthcare; Breast Cancer; classification; segmentation; ALGORITHM;
D O I
10.5755/j01.itc.52.4.34232
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Breast cancer is the most widespread cancer among women. Based on the International cancer research center analysis, the highest number of deaths among women is due to breast cancer. Hence, detecting breast cancer at the earliest may help the oncologist to make appropriate decisions. Due to variations in breast tissue density, there is still a challenge in precise diagnosis and classification. To overcome this challenge, a novel optimal trained deep learning model (OTDEM)-based breast cancer segmentation and classification are proposed with the following four stages: they are, preprocessing, segmentation, feature extraction, and classification. The input image is passed to the initial stage using the Contrast Limited Adaptive Histogram Equalization (CLA-HE) filter to enhance the image. Then the preprocessed image is given to the segmentation stage for the image sub-segments by correlation-based deep joint segmentation. Following that, the features such as statistical features, improved local gradient texture pattern (LGXP), texton features, and shape-based features are derived from the segmented image. Then the derived features are fed to the ensemble model that includes a convolutional neural network (CNN), deep belief network (DBN), and bidirectional graph recurrent unit (Bi-GRU) classifier to finalize the classification outcome. Further, to enhance the performance of the ensemble model, the weight of BI-GRU is optimized via a new algorithm termed Swarm Intelligence - Pelican Optimization Algorithm (SIPOA). This ensures optimal training to make the model more appropriate in its classification process. Finally, the performance of the proposed work is validated over the traditional models concerning different performance measures.
引用
收藏
页码:915 / 934
页数:20
相关论文
共 50 条
  • [41] Deep-learning method for tumor segmentation in breast DCE-MRI
    Zhang, Lei
    Luo, Zhimeng
    Chai, Ruimei
    Arefan, Dooman
    Sumkin, Jules
    Wu, Shandong
    MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954
  • [42] Breast Cancer Histology Image Classification using Deep Learning
    Canh Phong Nguyen
    Anh Hoang Vo
    Bao Thien Nguyen
    ISCIT 2019: PROCEEDINGS OF 2019 19TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES (ISCIT), 2019, : 366 - 370
  • [43] Towards an Accurate Breast Cancer Classification Model based on Ensemble Learning
    Hesham, Aya
    El-Rashidy, Nora
    Rezk, Amira
    Hikal, Noha A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (12) : 590 - 602
  • [44] Breast Cancer Histopathological Image Classification: A Deep Learning Approach
    Jannesari, Mahboubeh
    Habibzadeh, Mehdi
    Aboulkheyr, HamidReza
    Khosravi, Pegah
    Elemento, Olivier
    Totonchi, Mehdi
    Hajirasouliha, Iman
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 2405 - 2412
  • [45] Applying Deep Learning for Breast Cancer Detection in Radiology
    Mahoro, Ella
    Akhloufi, Moulay A. A.
    CURRENT ONCOLOGY, 2022, 29 (11) : 8767 - 8793
  • [46] Survey on Machine Learning and Deep Learning Applications in Breast Cancer Diagnosis
    Chugh, Gunjan
    Kumar, Shailender
    Singh, Nanhay
    COGNITIVE COMPUTATION, 2021, 13 (06) : 1451 - 1470
  • [47] An Efficient Breast Cancer Segmentation System based on Deep Learning Techniques
    Shaaban, Shaaban M.
    Nawaz, Majid
    Said, Yahia
    Barr, Mohammad
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2023, 13 (06) : 12415 - 12422
  • [48] Segmentation of Mammogram Images Using Deep Learning for Breast Cancer Detection
    Deb, Sagar Deep
    Jha, Rajib Kumar
    2022 2ND INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND ROBOTICS (ICIPROB), 2022,
  • [49] DEEP LEARNING APPROACH FOR CLASSIFICATION OF BREAST CANCER
    Togacar, Mesut
    Ergen, Burhan
    2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP), 2018,
  • [50] A review of the application of deep learning in medical image classification and segmentation
    Cai, Lei
    Gao, Jingyang
    Zhao, Di
    ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (11)