Thermal performance of phase change materials with anisotropic carbon fiber inserts

被引:3
|
作者
Zhou, Xinzhang [1 ]
Wang, Lingshi [2 ]
Naskar, Amit K. [1 ]
Liu, Xiaobing [2 ]
机构
[1] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37830 USA
[2] Oak Ridge Natl Lab, Bldg & Transportat Sci Div, Oak Ridge, TN 37830 USA
关键词
Thermal energy storage; Phase change material; Thermal conductivity; Carbon fiber; Anisotropy; Phase change front; Recalescence; COMSOL Multiphysics simulation; ENERGY-STORAGE; PCM; CONDUCTIVITY; ENHANCEMENT; BUILDINGS; BRUSHES;
D O I
10.1016/j.ijheatmasstransfer.2023.125162
中图分类号
O414.1 [热力学];
学科分类号
摘要
In thermal energy storage systems, phase change materials (PCMs) are widely used for thermal energy management. Most PCMs have low thermal conductivities, which limits the heat transfer rate within PCM and thus makes the phase-changing process very slow. However, thermal conductivities of PCMs can be altered by inserting targeted additives. We hypothesize that the size and shape of these additive inserts play a key role in thermal management efficiency. To this end, the impacts of carbon fiber (CF) inserts on the phase change behavior and consequent heat transfer efficiencies of inorganic and organic PCMs were investigated using experiments and simulations. Long, anisotropic CFs with high thermal conductivities formed continuous fast heat flux tunnels inside PCMs to enhance the heat transfer. Such CFs could extend the phase change fronts from the limited container-shaped interface to the larger surface of numerous CF inserts inside the PCM. These special CF inserts work with a new heat transfer mechanism, different from conventional small additives or long isotropic CF inserts. The thermal energy release rate increased by 2.5 times with 1 wt.% anisotropic CF inserts in inorganic PCM. However, CF inserts in liquid organic PCM hindered the natural convection and compromised the improved heat conduction. The lab-scale multiphysics simulations support these experimental observations and indicate that CF inserts have potential to enhance heat transfer in inorganic PCMs, but they are less effective in organic PCMs.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Novel hybrid composite phase change materials with high thermal performance based on aluminium nitride and nanocapsules
    Wang, Lu
    Kong, Xiangfei
    Ren, Jianlin
    Fan, Man
    Li, Han
    ENERGY, 2022, 238
  • [2] Effect Of Carbon Fiber On Thermal Properties Of n-DocosanePhase Change Materials
    Li, Min
    Wu, Zhishen
    Kao, Hongtao
    Sun, Wei
    Chen, Zhenqian
    Peng, Changhai
    6TH INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATING AND AIR CONDITIONING, VOLS I-III, PROCEEDINGS, 2009, : 1941 - 1948
  • [3] High thermal conductivity phase change composite with percolating carbon fiber network
    Nomura, Takahiro
    Tabuchi, Kazuki
    Zhu, Chunyu
    Sheng, Nan
    Wang, Shuangfeng
    Akiyama, Tomohiro
    APPLIED ENERGY, 2015, 154 : 678 - 685
  • [4] High internal phase emulsion templated-polystyrene/carbon nano fiber/hexadecanol composites phase change materials for thermal management applications
    Doguscu, Derya Kahraman
    Hekimoglu, Gokhan
    Sari, Ahmet
    JOURNAL OF ENERGY STORAGE, 2021, 39
  • [5] Effects of graphite microstructure evolution on the anisotropic thermal conductivity of expanded graphite/paraffin phase change materials and their thermal energy storage performance
    Wang, X. L.
    Li, B.
    Qu, Z. G.
    Zhang, J. F.
    Jin, Z. G.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 155 (155)
  • [6] Preparation and thermal properties of palmitic acid/expanded graphite/carbon fiber composite phase change materials for thermal energy storage
    Gao Long
    Sun Xuegeng
    Sun Baizhong
    Che Deyong
    Li Shaohua
    Liu Zhongze
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 141 (01) : 25 - 35
  • [7] Honeycomb carbon fibers strengthened composite phase change materials for superior thermal energy storage
    Sheng, Nan
    Rao, Zhonghao
    Zhu, Chunyu
    Habazaki, Hiroki
    APPLIED THERMAL ENGINEERING, 2020, 164 (164)
  • [8] Recent advances in enhanced thermal property in phase change materials using carbon nanotubes: A review
    Ong, Pin Jin
    Lee, Hui Yi Shuko
    Wang, Suxi
    Thitsartarn, Warintorn
    Zhang, Xikui
    Kong, Junhua
    Kai, Dan
    Tan, Beng Hoon
    Wang, Pei
    Qu, Zhengyao
    Xu, Jianwei
    Loh, Xian Jun
    Zhu, Qiang
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2025, 279
  • [9] High thermal conductivity and low leakage phase change materials filled with three-dimensional carbon fiber network
    Guo, Leyang
    Wang, Ying
    Shi, Shanshan
    Gao, Yuan
    Jiang, Tao
    Wu, Xinfeng
    Kai, Sun
    Zhao, Yuantao
    Yang, Ke
    Li, Wenge
    Yu, Jinhong
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2022, 30 (05) : 543 - 552
  • [10] Microstructure and thermal properties of cetyl alcohol/high density polyethylene composite phase change materials with carbon fiber as shape-stabilized thermal storage materials
    Huang, Xiang
    Alva, Guruprasad
    Liu, Lingkun
    Fang, Guiyin
    APPLIED ENERGY, 2017, 200 : 19 - 27