Reinforcement-Learning-Informed Queries Guide Behavioral Change

被引:1
作者
Brown, Vanessa M. [1 ,2 ,3 ,4 ]
Lee, Jacob [1 ]
Wang, John [1 ,2 ]
Casas, Brooks [1 ,2 ]
Chiu, Pearl H. [1 ,2 ]
机构
[1] Virginia Tech, Fralin Biomed Res Inst VTC, Blacksburg, VA 24061 USA
[2] Virginia Tech, Dept Psychol, Blacksburg, VA USA
[3] Univ Pittsburgh, Dept Psychiat, Pittsburgh, PA USA
[4] Emory Univ, Dept Psychol, Atlanta, GA 30322 USA
关键词
depression; experimental therapeutics; psychopathology; reinforcement learning; REWARD; DEPRESSION; PREDICTION; SYSTEMS;
D O I
10.1177/21677026231213368
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Algorithmically defined aspects of reinforcement learning correlate with psychopathology symptoms and change with symptom improvement following cognitive-behavioral therapy (CBT). Separate work in nonclinical samples has shown that varying the structure and statistics of task environments can change learning. Here, we combine these literatures, drawing on CBT-based guided restructuring of thought processes and computationally defined mechanistic targets identified by reinforcement-learning models in depression, to test whether and how verbal queries affect learning processes. Using a parallel-arm design, we tested 1,299 online participants completing a probabilistic reward-learning task while receiving repeated queries about the task environment (11 learning-query arms and one active control arm). Querying participants about reinforcement-learning-related task components altered computational-model-defined learning parameters in directions specific to the target of the query. These effects on learning parameters were consistent across depression-symptom severity, suggesting new learning-based strategies and therapeutic targets for evoking symptom change in mood psychopathology.
引用
收藏
页码:1146 / 1161
页数:16
相关论文
共 59 条
[1]   Psychometric properties of the 42-item and 21-item versions of the Depression Anxiety Stress Scales in clinical groups and a community sample [J].
Antony, MM ;
Bieling, PJ ;
Cox, BJ ;
Enns, MW ;
Swinson, RP .
PSYCHOLOGICAL ASSESSMENT, 1998, 10 (02) :176-181
[2]   The Importance of Assessing Clinical Phenomena in Mechanical Turk Research [J].
Arditte, Kimberly A. ;
Cek, Demet ;
Shaw, Ashley M. ;
Timpano, Kiara R. .
PSYCHOLOGICAL ASSESSMENT, 2016, 28 (06) :684-691
[3]   Rating expectations can slow aversive reversal learning [J].
Atlas, Lauren Y. ;
Sandman, Christina A. ;
Phelps, Elizabeth A. .
PSYCHOPHYSIOLOGY, 2022, 59 (03)
[4]   Instructed knowledge shapes feedback-driven aversive learning in striatum and orbitofrontal cortex, but not the amygdala [J].
Atlas, Lauren Y. ;
Doll, Bradley B. ;
Li, Jian ;
Daw, Nataniel D. ;
Phelps, Elizabeth A. .
ELIFE, 2016, 5
[5]  
Beck J., 2011, Cognitive behavioral therapy: Basics and beyond, V2nd
[6]   Learning the value of information in an uncertain world [J].
Behrens, Timothy E. J. ;
Woolrich, Mark W. ;
Walton, Mark E. ;
Rushworth, Matthew F. S. .
NATURE NEUROSCIENCE, 2007, 10 (09) :1214-1221
[7]   The influence of depression symptoms on exploratory decision-making [J].
Blanco, Nathaniel J. ;
Otto, A. Ross ;
Maddox, W. Todd ;
Beevers, Christopher G. ;
Love, Bradley C. .
COGNITION, 2013, 129 (03) :563-568
[8]   Reminders of past choices bias decisions for reward in humans [J].
Bornstein, Aaron M. ;
Khaw, Mel W. ;
Shohamy, Daphna ;
Daw, Nathaniel D. .
NATURE COMMUNICATIONS, 2017, 8
[9]   A modern learning theory perspective on the etiology of panic disorder [J].
Bouton, ME ;
Mineka, S ;
Barlow, DH .
PSYCHOLOGICAL REVIEW, 2001, 108 (01) :4-32
[10]   Reinforcement Learning Disruptions in Individuals With Depression and Sensitivity to Symptom Change Following Cognitive Behavioral Therapy [J].
Brown, Vanessa M. ;
Zhu, Lusha ;
Solway, Alec ;
Wang, John M. ;
McCurry, Katherine L. ;
King-Casas, Brooks ;
Chiu, Pearl H. .
JAMA PSYCHIATRY, 2021, 78 (10) :1113-1122