Review on functional data classification

被引:3
|
作者
Wang, Shuoyang [1 ]
Huang, Yuan [1 ]
Cao, Guanqun [2 ]
机构
[1] Yale Univ, Dept Biostat, New Haven, CT USA
[2] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
关键词
classification; functional data analysis; machine learning; optimal classification; DISCRIMINANT-ANALYSIS; DEPTH; CLASSIFIERS; SELECTION; RATES;
D O I
10.1002/wics.1638
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A fundamental problem in functional data analysis is to classify a functional observation based on training data. The application of functional data classification has gained immense popularity and utility across a wide array of disciplines, encompassing biology, engineering, environmental science, medical science, neurology, social science, and beyond. The phenomenal growth of the application of functional data classification indicates the urgent need for a systematic approach to develop efficient classification methods and scalable algorithmic implementations. Therefore, we here conduct a comprehensive review of classification methods for functional data. The review aims to bridge the gap between the functional data analysis community and the machine learning community, and to intrigue new principles for functional data classification. This article is categorized under:Statistical Learning and Exploratory Methods of the Data Sciences > Clustering and ClassificationStatistical Models > Classification ModelsData: Types and Structure > Time Series, Stochastic Processes, and Functional Data
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Classification of Functional Data: A Comparative Study
    Ramos-Carreno, Carlos
    Torrecilla, Jose Luis
    Suarez, Alberto
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 866 - 871
  • [2] Model-based clustering and classification of functional data
    Chamroukhi, Faicel
    Nguyen, Hien D.
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 9 (04)
  • [3] OPTIMAL CLASSIFICATION FOR FUNCTIONAL DATA
    Wang, Shuoyang
    Shang, Zuofeng
    Cao, Guanqun
    Liu, Jun S.
    STATISTICA SINICA, 2024, 34 (03) : 1545 - 1564
  • [4] Variation pattern classification of functional data
    Jiao, Shuhao
    Frostig, Ron D.
    Ombao, Hernando
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2023, 51 (04): : 943 - 958
  • [5] Functional Data Classification of Variable Stars
    Park, Minjeong
    Kim, Donghoh
    Cho, Sinsup
    Oh, Hee-Seok
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2013, 20 (04) : 271 - 281
  • [6] Functional Sufficient Dimension Reduction for Functional Data Classification
    Wang, Guochang
    Song, Xinyuan
    JOURNAL OF CLASSIFICATION, 2018, 35 (02) : 250 - 272
  • [7] Functional modelling and classification of longitudinal data
    Müller, HG
    SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (02) : 223 - 240
  • [8] Supervised classification of geometrical objects by integrating currents and functional data analysis
    Barahona, S.
    Centella, P.
    Gual-Arnau, X.
    Ibanez, M., V
    Simo, A.
    TEST, 2020, 29 (03) : 637 - 660
  • [9] Functional data classification using covariate-adjusted subspace projection
    Li, Pai-Ling
    Chiou, Jeng-Min
    Shyr, Yu
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 115 : 21 - 34
  • [10] Review of imbalanced data classification methods
    Li Y.-X.
    Chai Y.
    Hu Y.-Q.
    Yin H.-P.
    Kongzhi yu Juece/Control and Decision, 2019, 34 (04): : 673 - 688