Origin of Aging of a P2-Na x Mn3/4Ni1/4O2 Cathode Active Material for Sodium-Ion Batteries

被引:13
作者
Pfeiffer, Lukas Fridolin [3 ]
Li, Yueliang [1 ]
Mundszinger, Manuel [1 ]
Geisler, Jonas [2 ]
Pfeifer, Claudia [3 ]
Mikhailova, Daria [4 ]
Omar, Ahmad [4 ]
Baran, Volodymyr [5 ]
Biskupek, Johannes [1 ]
Kaiser, Ute [1 ]
Adelhelm, Philipp [2 ]
Wohlfahrt-Mehrens, Margret [3 ]
Passerini, Stefano [6 ,7 ]
Axmann, Peter [3 ]
机构
[1] Ulm Univ, Electron Microscopy Grp Mat Sci, D-89081 Ulm, Germany
[2] Humboldt Univ, Inst Chem, D-12489 Berlin, Germany
[3] ZSW Ctr Solar Energy & Hydrogen Res Baden Wurttem, D-89081 Ulm, Germany
[4] Leibniz Inst Solid State & Mat Res IFW Dresden eV, D-01069 Dresden, Germany
[5] Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany
[6] Karlsruhe Inst Technol, Helmholtz Inst Ulm, D-89081 Ulm, Germany
[7] Sapienza Univ Rome, Chem Dept, I-00185 Rome, Italy
关键词
ELECTRICAL ENERGY-STORAGE; TRANSITION-METAL OXIDES; NA-ION; OXYGEN RELEASE; POSITIVE ELECTRODE; HIGH-CAPACITY; PHASE; LI; IMPEDANCE; COMMERCIALIZATION;
D O I
10.1021/acs.chemmater.3c01499
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium-ion batteries (SIB) are currently being developed and commercialized as a promising new technology for cost-effective and powerful electrical energy storage. In this study, we investigate the origin of capacity fading in P2-type layered sodium cathode materials for SIBs using a micron-sized single-crystalline P2-Na-x Mn3/4Ni1/4O2 model cathode active material. Using various electrochemical techniques, we identify the following aging effects upon cycling: (i) a state of charge (SOC)-independent increase in polarization, (ii) a SOC-dependent increase in polarization at high voltage, and (iii) a loss of active material due to electronic disconnection after prolonged cycling. With high-resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray (EDX) spectroscopy, we identify surface densification, resulting in 5-10 nm thick surface layers on cycled cathode active materials as the origin for SOC-independent increase of polarization. The corresponding oxygen loss is in accordance with gas evolution in differential electrochemical mass spectrometry (DEMS) measurements. Furthermore, with scanning electron microscopy (SEM) electrode cross sections, we identify (partly) reversible cracking at a high SOC as the cause for increased polarization depending on SOC. Operando X-ray diffraction (XRD) identifies significant anisotropic volume change, which suggests mechanical stress as the cause for cracking at a high SOC and loss of active material after prolonged cycling. We believe that the herein provided understanding on the aging of this highly attractive class of cathode active materials for SIBs will enable the development of future powerful and stable layered oxide cathode materials for SIBs.
引用
收藏
页码:8065 / 8080
页数:16
相关论文
共 100 条
[31]   Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage [J].
Gur, Turgut M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (10) :2696-2767
[32]   On Disrupting the Na+-Ion/Vacancy Ordering in P2-Type Sodium-Manganese-Nickel Oxide Cathodes for Na+-Ion Batteries [J].
Gutierrez, Arturo ;
Dose, Wesley M. ;
Borkiewicz, Olaf ;
Guo, Fangmin ;
Avdeev, Maxim ;
Kim, Soojeong ;
Fister, Timothy T. ;
Ren, Yang ;
Bareno, Javier ;
Johnson, Christopher S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (41) :23251-23260
[33]   Optimized Process Parameters for a Reproducible Distribution of Relaxation Times Analysis of Electrochemical Systems [J].
Hahn, Markus ;
Schindler, Stefan ;
Triebs, Lisa-Charlotte ;
Danzer, Michael A. .
BATTERIES-BASEL, 2019, 5 (02)
[34]   Challenges of today for Na-based batteries of the future: From materials to cell metrics [J].
Hasa, Ivana ;
Mariyappan, Sathiya ;
Saurel, Damien ;
Adelhelm, Philipp ;
Koposov, Alexey Y. ;
Masquelier, Christian ;
Croguennec, Laurence ;
Casas-Cabanas, Montse .
JOURNAL OF POWER SOURCES, 2021, 482
[35]   A novel high-throughput setup for in situ powder diffraction on coin cell batteries [J].
Herklotz, Markus ;
Weiss, Jonas ;
Ahrens, Eike ;
Yavuz, Murat ;
Mereacre, Liuda ;
Kiziltas-Yavuz, Niluefer ;
Draeger, Christoph ;
Ehrenberg, Helmut ;
Eckert, Juergen ;
Fauth, Francois ;
Giebeler, Lars ;
Knapp, Michael .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2016, 49 :340-345
[36]   Determination of effective capacitance and film thickness from constant-phase-element parameters [J].
Hirschorn, Bryan ;
Orazem, Mark E. ;
Tribollet, Bernard ;
Vivier, Vincent ;
Frateur, Isabelle ;
Musiani, Marco .
ELECTROCHIMICA ACTA, 2010, 55 (21) :6218-6227
[37]   What Triggers Oxygen Loss in Oxygen Redox Cathode Materials? [J].
House, Robert A. ;
Maitra, Urmimala ;
Jin, Liyu ;
Lozano, Juan G. ;
Somerville, James W. ;
Rees, Nicholas H. ;
Naylor, Andrew J. ;
Duda, Laurent C. ;
Massel, Felix ;
Chadwick, Alan V. ;
Ramos, Silvia ;
Pickup, David M. ;
McNally, Daniel E. ;
Lu, Xingye ;
Schmitt, Thorsten ;
Roberts, Matthew R. ;
Bruce, Peter G. .
CHEMISTRY OF MATERIALS, 2019, 31 (09) :3293-3300
[38]  
International Energy Agency, 2023, Critical Materials and Sustainability Transition
[39]   Life cycle assessment (LCA) of a battery home storage system based on primary data [J].
Jasper, Friedrich B. ;
Spathe, Jana ;
Baumann, Manuel ;
Peters, Jens F. ;
Ruhland, Janna ;
Weil, Marcel .
JOURNAL OF CLEANER PRODUCTION, 2022, 366
[40]   Temperature Dependence of Oxygen Release from LiNi0.6Mn0.2Co0.2O2 (NMC622) Cathode Materials for Li-Ion Batteries [J].
Jung, Roland ;
Strobl, Philipp ;
Maglia, Filippo ;
Stinner, Christoph ;
Gasteiger, Hubert A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (11) :A2869-A2879