Origin of Aging of a P2-Na x Mn3/4Ni1/4O2 Cathode Active Material for Sodium-Ion Batteries

被引:11
作者
Pfeiffer, Lukas Fridolin [3 ]
Li, Yueliang [1 ]
Mundszinger, Manuel [1 ]
Geisler, Jonas [2 ]
Pfeifer, Claudia [3 ]
Mikhailova, Daria [4 ]
Omar, Ahmad [4 ]
Baran, Volodymyr [5 ]
Biskupek, Johannes [1 ]
Kaiser, Ute [1 ]
Adelhelm, Philipp [2 ]
Wohlfahrt-Mehrens, Margret [3 ]
Passerini, Stefano [6 ,7 ]
Axmann, Peter [3 ]
机构
[1] Ulm Univ, Electron Microscopy Grp Mat Sci, D-89081 Ulm, Germany
[2] Humboldt Univ, Inst Chem, D-12489 Berlin, Germany
[3] ZSW Ctr Solar Energy & Hydrogen Res Baden Wurttem, D-89081 Ulm, Germany
[4] Leibniz Inst Solid State & Mat Res IFW Dresden eV, D-01069 Dresden, Germany
[5] Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany
[6] Karlsruhe Inst Technol, Helmholtz Inst Ulm, D-89081 Ulm, Germany
[7] Sapienza Univ Rome, Chem Dept, I-00185 Rome, Italy
关键词
ELECTRICAL ENERGY-STORAGE; TRANSITION-METAL OXIDES; NA-ION; OXYGEN RELEASE; POSITIVE ELECTRODE; HIGH-CAPACITY; PHASE; LI; IMPEDANCE; COMMERCIALIZATION;
D O I
10.1021/acs.chemmater.3c01499
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium-ion batteries (SIB) are currently being developed and commercialized as a promising new technology for cost-effective and powerful electrical energy storage. In this study, we investigate the origin of capacity fading in P2-type layered sodium cathode materials for SIBs using a micron-sized single-crystalline P2-Na-x Mn3/4Ni1/4O2 model cathode active material. Using various electrochemical techniques, we identify the following aging effects upon cycling: (i) a state of charge (SOC)-independent increase in polarization, (ii) a SOC-dependent increase in polarization at high voltage, and (iii) a loss of active material due to electronic disconnection after prolonged cycling. With high-resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray (EDX) spectroscopy, we identify surface densification, resulting in 5-10 nm thick surface layers on cycled cathode active materials as the origin for SOC-independent increase of polarization. The corresponding oxygen loss is in accordance with gas evolution in differential electrochemical mass spectrometry (DEMS) measurements. Furthermore, with scanning electron microscopy (SEM) electrode cross sections, we identify (partly) reversible cracking at a high SOC as the cause for increased polarization depending on SOC. Operando X-ray diffraction (XRD) identifies significant anisotropic volume change, which suggests mechanical stress as the cause for cracking at a high SOC and loss of active material after prolonged cycling. We believe that the herein provided understanding on the aging of this highly attractive class of cathode active materials for SIBs will enable the development of future powerful and stable layered oxide cathode materials for SIBs.
引用
收藏
页码:8065 / 8080
页数:16
相关论文
共 100 条
[1]   Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells [J].
Abraham, DP ;
Twesten, RD ;
Balasubramanian, M ;
Petrov, I ;
McBreen, J ;
Amine, K .
ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (08) :620-625
[2]   Improvement of the Cathode Electrolyte Interphase on P2-Na2/3Ni1/3Mn2/3O2 by Atomic Layer Deposition [J].
Alvarado, Judith ;
Ma, Chuze ;
Wang, Shen ;
Nguyen, Kimberly ;
Kodur, Moses ;
Meng, Ying Shirley .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (31) :26518-26530
[3]   Structure, Composition, Transport Properties, and Electrochemical Performance of the Electrode-Electrolyte Interphase in Non-Aqueous Na-Ion Batteries [J].
Angel Munoz-Marquez, Miguel ;
Zarrabeitia, Maider ;
Passerini, Stefano ;
Rojo, Teofilo .
ADVANCED MATERIALS INTERFACES, 2022, 9 (08)
[4]  
[Anonymous], 2001, Electrochemical Methods: Fundamentals and Applications, V2 Bard, A. J. F
[5]   Lithium-ion batteries - Current state of the art and anticipated developments [J].
Armand, Michel ;
Axmann, Peter ;
Bresser, Dominic ;
Copley, Mark ;
Edstrom, Kristina ;
Ekberg, Christian ;
Guyomard, Dominique ;
Lestriez, Bernard ;
Novak, Petr ;
Petranikova, Martina ;
Porcher, Willy ;
Trabesinger, Sigita ;
Wohlfahrt-Mehrens, Margret ;
Zhang, Heng .
JOURNAL OF POWER SOURCES, 2020, 479
[6]   The Scale-up and Commercialization of Nonaqueous Na-Ion Battery Technologies [J].
Bauer, Alexander ;
Song, Jie ;
Vail, Sean ;
Pan, Wei ;
Barker, Jerry ;
Lu, Yuhao .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[7]   There and Back Again-The Journey of LiNiO2 as a Cathode Active Material [J].
Bianchini, Matteo ;
Roca-Ayats, Maria ;
Hartmann, Pascal ;
Brezesinski, Torsten ;
Janek, Juergen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (31) :10434-10458
[8]   Impedance of constant phase element (CPE)-blocked diffusion in film electrodes [J].
Bisquert, J ;
Garcia-Belmonte, G ;
Bueno, P ;
Longo, E ;
Bulhoes, LOS .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1998, 452 (02) :229-234
[9]   Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications [J].
Bredar, Alexandria R. C. ;
Chown, Amanda L. ;
Burton, Andricus R. ;
Farnum, Byron H. .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (01) :66-98
[10]   THE ANALYSIS OF ELECTRODE IMPEDANCES COMPLICATED BY THE PRESENCE OF A CONSTANT PHASE ELEMENT [J].
BRUG, GJ ;
VANDENEEDEN, ALG ;
SLUYTERSREHBACH, M ;
SLUYTERS, JH .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1984, 176 (1-2) :275-295