Computer image analysis with artificial intelligence: a practical introduction to convolutional neural networks for medical professionals

被引:20
作者
Kourounis, Georgios [1 ,2 ,3 ,6 ]
Elmahmudi, Ali Ahmed [4 ]
Thomson, Brian [4 ]
Hunter, James [5 ]
Ugail, Hassan [4 ]
Wilson, Colin [1 ,2 ,3 ]
机构
[1] Newcastle Univ, NIHR Blood & Transplant Res Unit, Newcastle Upon Tyne NE1 7RU, England
[2] Univ Cambridge, Newcastle Upon Tyne NE1 7RU, England
[3] Freeman Rd Hosp, Inst Transplantat, Newcastle Upon Tyne NE7 7DN, England
[4] Univ Bradford, Fac Engn & Informat, Bradford BD7 1DP, England
[5] Univ Oxford, Nuffield Dept Surg Sci, Oxford OX3 9DU, England
[6] Freeman Rd Hosp, Transplant & HPB Dept, Freeman Rd, Newcastle Upon Tyne NE7 7DN, England
关键词
biotechnology & bioinformatics; education and training; radiology & imaging; SKIN-CANCER; CLASSIFICATION;
D O I
10.1093/postmj/qgad095
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial intelligence tools, particularly convolutional neural networks (CNNs), are transforming healthcare by enhancing predictive, diagnostic, and decision-making capabilities. This review provides an accessible and practical explanation of CNNs for clinicians and highlights their relevance in medical image analysis. CNNs have shown themselves to be exceptionally useful in computer vision, a field that enables machines to 'see' and interpret visual data. Understanding how these models work can help clinicians leverage their full potential, especially as artificial intelligence continues to evolve and integrate into healthcare. CNNs have already demonstrated their efficacy in diverse medical fields, including radiology, histopathology, and medical photography. In radiology, CNNs have been used to automate the assessment of conditions such as pneumonia, pulmonary embolism, and rectal cancer. In histopathology, CNNs have been used to assess and classify colorectal polyps, gastric epithelial tumours, as well as assist in the assessment of multiple malignancies. In medical photography, CNNs have been used to assess retinal diseases and skin conditions, and to detect gastric and colorectal polyps during endoscopic procedures. In surgical laparoscopy, they may provide intraoperative assistance to surgeons, helping interpret surgical anatomy and demonstrate safe dissection zones. The integration of CNNs into medical image analysis promises to enhance diagnostic accuracy, streamline workflow efficiency, and expand access to expert-level image analysis, contributing to the ultimate goal of delivering further improvements in patient and healthcare outcomes.
引用
收藏
页码:1287 / 1294
页数:8
相关论文
共 50 条
[11]   The Future Role of Machine Learning in Clinical Transplantation [J].
Connor, Katie L. ;
O'Sullivan, Eoin D. ;
Marson, Lorna P. ;
Wigmore, Stephen J. ;
Harrison, Ewen M. .
TRANSPLANTATION, 2021, 105 (04) :723-735
[12]   Deep multiple instance learning for automatic glaucoma prevention and auto-annotation using color fundus photography [J].
Elmoufidi, Abdelali ;
Skouta, Ayoub ;
Jai-andaloussi, Said ;
Ouchetto, Ouail .
PROGRESS IN ARTIFICIAL INTELLIGENCE, 2022, 11 (04) :397-409
[13]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[14]  
Greenway K., 2024, Hounsfield unit, DOI [10.53347/rID-38181, DOI 10.53347/RID-38181]
[15]   Keratinocytic Skin Cancer Detection on the Face Using Region-Based Convolutional Neural Network [J].
Han, Seung Seog ;
Moon, Ik Jun ;
Lim, Woohyung ;
Suh, In Suck ;
Lee, Sam Yong ;
Na, Jung-Im ;
Kim, Seong Hwan ;
Chang, Sung Eun .
JAMA DERMATOLOGY, 2020, 156 (01) :29-37
[16]   Efficient Pneumonia Detection in Chest Xray Images Using Deep Transfer Learning [J].
Hashmi, Mohammad Farukh ;
Katiyar, Satyarth ;
Keskar, Avinash G. ;
Bokde, Neeraj Dhanraj ;
Geem, Zong Woo .
DIAGNOSTICS, 2020, 10 (06)
[17]   The practical implementation of artificial intelligence technologies in medicine [J].
He, Jianxing ;
Baxter, Sally L. ;
Xu, Jie ;
Xu, Jiming ;
Zhou, Xingtao ;
Zhang, Kang .
NATURE MEDICINE, 2019, 25 (01) :30-36
[18]   Convolutional Neural Networks for the Evaluation of Chronic and Inflammatory Lesions in Kidney Transplant Biopsies [J].
Hermsen, Meyke ;
Ciompi, Francesco ;
Adefidipe, Adeyemi ;
Denic, Aleksandar ;
Dendooven, Amelie ;
Smith, Byron H. ;
van Midden, Dominique ;
Braesen, Jan Hinrich ;
Kers, Jesper ;
Stegall, Mark D. ;
Bandi, Peter ;
Nguyen, Tri ;
Swiderska-Chadaj, Zaneta ;
Smeets, Bart ;
Hilbrands, Luuk B. ;
van der Laak, Jeroen A. W. M. .
AMERICAN JOURNAL OF PATHOLOGY, 2022, 192 (10) :1418-1432
[19]   Original Research Combining CNN-based histologic whole slide image analysis and patient data to improve skin cancer classification [J].
Hoehn, Julia ;
Krieghoff-Henning, Eva ;
Jutzi, Tanja B. ;
von Kalle, Christof ;
Utikal, Jochen S. ;
Meier, Friedegund ;
Gellrich, Frank F. ;
Hobelsberger, Sarah ;
Hauschild, Axel ;
Schlager, Justin G. ;
French, Lars ;
Heinzerling, Lucie ;
Schlaak, Max ;
Ghoreschi, Kamran ;
Hilke, Franz J. ;
Poch, Gabriela ;
Kutzner, Heinz ;
Heppt, Markus, V ;
Haferkamp, Sebastian ;
Sondermann, Wiebke ;
Schadendorf, Dirk ;
Schilling, Bastian ;
Goebeler, Matthias ;
Hekler, Achim ;
Froehling, Stefan ;
Lipka, Daniel B. ;
Kather, Jakob N. ;
Krahl, Dieter ;
Ferrara, Gerardo ;
Haggenmueller, Sarah ;
Brinker, Titus J. .
EUROPEAN JOURNAL OF CANCER, 2021, 149 :94-101
[20]   Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks [J].
Hollon, Todd C. ;
Pandian, Balaji ;
Adapa, Arjun R. ;
Urias, Esteban ;
Save, Akshay V. ;
Khalsa, Siri Sahib S. ;
Eichberg, Daniel G. ;
D'Amico, Randy S. ;
Farooq, Zia U. ;
Lewis, Spencer ;
Petridis, Petros D. ;
Marie, Tamara ;
Shah, Ashish H. ;
Garton, Hugh J. L. ;
Maher, Cormac O. ;
Heth, Jason A. ;
McKean, Erin L. ;
Sullivan, Stephen E. ;
Hervey-Jumper, Shawn L. ;
Patil, Parag G. ;
Thompson, B. Gregory ;
Sagher, Oren ;
McKhann, Guy M. ;
Komotar, Ricardo J. ;
Ivan, Michael E. ;
Snuderl, Matija ;
Otten, Marc L. ;
Johnson, Timothy D. ;
Sisti, Michael B. ;
Bruce, Jeffrey N. ;
Muraszko, Karin M. ;
Trautman, Jay ;
Freudiger, Christian W. ;
Canoll, Peter ;
Lee, Honglak ;
Camelo-Piragua, Sandra ;
Orringer, Daniel A. .
NATURE MEDICINE, 2020, 26 (01) :52-+