In-situ prelithiation of electrolyte-free silicon anode for sulfide all-solid-state batteries

被引:22
作者
Fan, Zengjie [1 ]
Ding, Bing [1 ,2 ,3 ]
Li, Zhiwei [1 ]
Chang, Zhi [4 ]
Hu, Ben [1 ]
Xu, Chong [1 ]
Zhang, Xingyu [1 ]
Dou, Hui [1 ]
Zhang, Xiaogang [1 ,2 ,3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Jiangsu Key Lab Electrochem Energy Storage Technol, Nanjing 210016, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Aerosp Struct, 29 Yudao St, Nanjing 210016, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
[4] Cent South Univ, Sch Mat Sci & Engn, Key Lab Elect Packaging & Adv Funct Mat Hunan Prov, Changsha 410083, Hunan, Peoples R China
关键词
All-solid-state batteries; Silicon anode; In -situ prelithiation; Three-electrode cells; Lithium kinetics; PERFORMANCE;
D O I
10.1016/j.etran.2023.100277
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
All-solid-state batteries (ASSBs) based on silicon (Si) anodes offer high energy density and safety, which are considered promising next-generation energy-storage systems. However, the large initial capacity loss of Si anodes greatly limits the practical capacity and rate performance of ASSBs. Herein, through the unique in-situ prelithiation of electrolyte-free Si anodes by using ultra-thin lithium (Li) foil, the Li6PS5Cl electrolyte-based ASSBs achieve significantly improved initial Coulombic efficiencies (ICEs). The results of three-electrode ASSBs confirm that the in-situ prelithiation strategy effectively improves the reversible delithiation capacity and solid-state Li kinetics of electrolyte-free Si anode. The full cells utilizing prelithiated Si anode and LiNi0.8-Co0.1Mn0.1O2 (NCM811) cathode exhibit a remarkable energy density of 402 Wh kg-1 (based on the total mass of cathode and anode) at 0.1 C and achieve a wide operating temperature range between-30 and 50 degrees C. In addition, the bi-polar stacking cell with high-loading NCM811 cathode achieves a high cut-off voltage of 8.7 V and works stable for over 50 cycles. This practical prelithiation method presents substantial advantages to promote the development of ASSBs based on Si anodes with high ICEs and fast Li kinetics, offering a pathway to realize solid-state storages with high rates and high energy densities.
引用
收藏
页数:10
相关论文
共 50 条
[1]   Mechanistic Insights into the Pre-Lithiation of Silicon/Graphite Negative Electrodes in "Dry State" and After Electrolyte Addition Using Passivated Lithium Metal Powder [J].
Baermann, Peer ;
Mohrhardt, Marvin ;
Frerichs, Joop Enno ;
Helling, Malina ;
Kolesnikov, Aleksei ;
Klabunde, Sina ;
Nowak, Sascha ;
Hansen, Michael Ryan ;
Winter, Martin ;
Placke, Tobias .
ADVANCED ENERGY MATERIALS, 2021, 11 (25)
[2]   Elucidating the Role of Prelithiation in Si-based Anodes for Interface Stabilization [J].
Bai, Shuang ;
Bao, Wurigumula ;
Qian, Kun ;
Han, Bing ;
Li, Weikang ;
Sayahpour, Baharak ;
Sreenarayanan, Bhagath ;
Tan, Darren H. S. ;
Ham, So-yeon ;
Meng, Ying Shirley .
ADVANCED ENERGY MATERIALS, 2023, 13 (28)
[3]   Enabling High-Energy Solid-State Batteries with Stable Anode Interphase by the Use of Columnar Silicon Anodes [J].
Cangaz, Sahin ;
Hippauf, Felix ;
Reuter, Florian Steffen ;
Doerfler, Susanne ;
Abendroth, Thomas ;
Althues, Holger ;
Kaskel, Stefan .
ADVANCED ENERGY MATERIALS, 2020, 10 (34)
[4]   Bipolar stackings high voltage and high cell level energy density sulfide based all-solid-state batteries [J].
Cao, Daxian ;
Sun, Xiao ;
Wang, Ying ;
Zhu, Hongli .
ENERGY STORAGE MATERIALS, 2022, 48 :458-465
[5]   Long-Cycling Sulfide-Based All-Solid-State Batteries Enabled by Electrochemo-Mechanically Stable Electrodes [J].
Cao, Daxian ;
Sun, Xiao ;
Li, Yejing ;
Anderson, Alexander ;
Lu, Wenquan ;
Zhu, Hongli .
ADVANCED MATERIALS, 2022, 34 (24)
[6]   Weakly Solvating Solution Enables Chemical Prelithiation of Graphite-SiOx Anodes for High-Energy Li-Ion Batteries [J].
Choi, Jinkwan ;
Jeong, Hyangsoo ;
Jang, Juyoung ;
Jeon, A-Re ;
Kang, Inyeong ;
Kwon, Minhyung ;
Hong, Jihyun ;
Lee, Minah .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (24) :9169-9176
[7]   Stack Pressure Considerations for Room-Temperature All-Solid-State Lithium Metal Batteries [J].
Doux, Jean-Marie ;
Han Nguyen ;
Tan, Darren H. S. ;
Banerjee, Abhik ;
Wang, Xuefeng ;
Wu, Erik A. ;
Jo, Chiho ;
Yang, Hedi ;
Meng, Ying Shirley .
ADVANCED ENERGY MATERIALS, 2020, 10 (01)
[8]   Towards the Commercialization of the All-Solid-State Li-ion Battery: Local Bonding Structure and the Reversibility of Sheet-Style Si-PAN Anodes [J].
Dunlap, Nathan Arthur ;
Kim, Jongbeom ;
Guthery, Harvey ;
Jiang, Chun-Sheng ;
Morrissey, Ian ;
Stoldt, Conrad R. ;
Oh, Kyu Hwan ;
Al-Jassim, Mowafak ;
Lee, Se-Hee .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (06)
[9]   Simple and inexpensive coal-tar-pitch derived Si-C anode composite for all-solid-state Li-ion batteries [J].
Dunlap, Nathan Arthur ;
Kim, Seulcham ;
Jeong, Je Jun ;
Oh, Kyu Hwan ;
Lee, Se-Hee .
SOLID STATE IONICS, 2018, 324 :207-217
[10]   Long-Cycling All-Solid-State Batteries Achieved by 2D Interface between Prelithiated Aluminum Foil Anode and Sulfide Electrolyte [J].
Fan, Zengjie ;
Ding, Bing ;
Li, Zhiwei ;
Hu, Ben ;
Xu, Chong ;
Xu, Chengyang ;
Dou, Hui ;
Zhang, Xiaogang .
SMALL, 2022, 18 (44)