Explainable artificial intelligence-based prediction of poor neurological outcome from head computed tomography in the immediate post-resuscitation phase

被引:12
作者
Kawai, Yasuyuki [1 ]
Kogeichi, Yohei [1 ]
Yamamoto, Koji [1 ]
Miyazaki, Keita [1 ]
Asai, Hideki [1 ]
Fukushima, Hidetada [1 ]
机构
[1] Nara Med Univ, Dept Emergency & Crit Care Med, 840 Shijo Cho, Kashihara, Nara 6348522, Japan
关键词
CARDIAC-ARREST; COMATOSE PATIENTS; CT; PROGNOSTICATION; ASSOCIATION; VALIDATION; MATTER; EDEMA;
D O I
10.1038/s41598-023-32899-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Predicting poor neurological outcomes after resuscitation is important for planning treatment strategies. We constructed an explainable artificial intelligence-based prognostic model using head computed tomography (CT) scans taken immediately within 3 h of resuscitation from cardiac arrest and compared its predictive accuracy with that of previous methods using gray-to-white matter ratio (GWR). We included 321 consecutive patients admitted to our institution after resuscitation for out-of-hospital cardiopulmonary arrest with circulation resumption over 6 years. A machine learning model using head CT images with transfer learning was used to predict the neurological outcomes at 1 month. These predictions were compared with the predictions of GWR for multiple regions of interest in head CT using receiver operating characteristic (ROC)-area under curve (AUC) and precision recall (PR)-AUC. The regions of focus were visualized using a heatmap. Both methods had similar ROC-AUCs, but the machine learning model had a higher PR-AUC (0.73 vs. 0.58). The machine learning-focused area of interest for classification was the boundary between gray and white matter, which overlapped with the area of focus when diagnosing hypoxic- ischemic brain injury. The machine learning model for predicting poor outcomes had superior accuracy to conventional methods and could help optimize treatment.
引用
收藏
页数:8
相关论文
共 24 条
[1]   Clinical paper Routine reporting of grey-white matter differentiation in early brain computed tomography in comatose patients after cardiac arrest: A substudy of the COACT trial [J].
Adriaansens, K. O. ;
Jewbali, L. S. D. ;
Lemkes, J. S. ;
Spoormans, E. M. ;
Meuwissen, M. ;
Blans, M. J. ;
van der Harst, P. ;
Eikemans, B. J. W. ;
Bleeker, G. B. ;
Beishuizen, A. ;
Henriques, J. P. ;
van der Lugt, A. ;
van Royen, N. ;
den Uil, C. A. .
RESUSCITATION, 2022, 175 :13-18
[2]  
[Anonymous], 1986, Am J Emerg Med, V4, P72
[3]   Early head CT in post-cardiac arrest patients: A helpful tool or contributor to self-fulfilling prophecy? [J].
Beekman, Rachel ;
Maciel, Carolina B. ;
Ormseth, Cora H. ;
Zhou, Sonya E. ;
Galluzzo, Daniela ;
Miyares, Laura C. ;
Torres-Lopez, Victor M. ;
Payabvash, Seyedmehdi ;
Mak, Adrian ;
Greer, David M. ;
Gilmore, Emily J. .
RESUSCITATION, 2021, 165 :68-76
[4]  
Benjamin EJ, 2019, CIRCULATION, V139, pE56, DOI [10.1161/CIR.0000000000000659, 10.1161/CIR.0000000000000746]
[5]   Imaging the acute respiratory distress syndrome: past, present and future [J].
Bitker, Laurent ;
Talmor, Daniel ;
Richard, Jean-Christophe .
INTENSIVE CARE MEDICINE, 2022, 48 (08) :995-1008
[6]   Quantitative Chest CT Assessment of Small Airways Disease in Post-Acute SARS-CoV-2 Infection [J].
Cho, Josalyn L. ;
Villacreses, Raul ;
Nagpal, Prashant ;
Guo, Junfeng ;
Pezzulo, Alejandro A. ;
Thurman, Andrew L. ;
Hamzeh, Nabeel Y. ;
Blount, Robert J. ;
Fortis, Spyridon ;
Hoffman, Eric A. ;
Zabner, Joseph ;
Comellas, Alejandro P. .
RADIOLOGY, 2022, 304 (01) :185-192
[7]   The association between a quantitative computed tomography (CT) measurement of cerebral edema and outcomes in post-cardiac arrest-A validation study [J].
Cristia, Cristal ;
Ho, Mai-Lan ;
Levy, Sean ;
Andersen, Lars W. ;
Perman, Sarah M. ;
Giberson, Tyler ;
Salciccioli, Justin D. ;
Saindon, Brian Z. ;
Cocchi, Michael N. ;
Donnino, Michael W. .
RESUSCITATION, 2014, 85 (10) :1348-1353
[8]   Handling imbalanced medical image data: A deep-learning-based one-class classification approach [J].
Gao, Long ;
Zhang, Lei ;
Liu, Chang ;
Wu, Shandong .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 108
[9]   Standards for Studies of Neurological Prognostication in Comatose Survivors of Cardiac Arrest: A Scientific Statement From the American Heart Association [J].
Geocadin, Romergryko G. ;
Callaway, Clifton W. ;
Fink, Ericka L. ;
Golan, Eyal ;
Greer, David M. ;
Ko, Nerissa U. ;
Lang, Eddy ;
Licht, Daniel J. ;
Marino, Bradley S. ;
McNair, Norma D. ;
Peberdy, Mary Ann ;
Perman, Sarah M. ;
Sims, Daniel B. ;
Soar, Jasmeet ;
Sandroni, Claudio .
CIRCULATION, 2019, 140 (09) :E517-E542
[10]   COSCA (Core Outcome Set for Cardiac Arrest) in Adults An Advisory Statement From the International Liaison Committee on Resuscitation [J].
Haywood, Kirstie ;
Whitehead, Laura ;
Nadkarni, Vinay M. ;
Achana, Felix ;
Beesems, Stefanie ;
Boettiger, Bernd W. ;
Brooks, Anne ;
Castren, Maaret ;
Ong, Marcus E. H. ;
Hazinski, Mary Fran ;
Koster, Rudolph W. ;
Lilja, Gisela ;
Long, John ;
Monsieurs, Koenraad G. ;
Morley, Peter T. ;
Morrison, Laurie ;
Nichol, Graham ;
Oriolo, Valentino ;
Saposnik, Gustavo ;
Smyth, Michael ;
Spearpoint, Ken ;
Williams, Barry ;
Perkins, Gavin D. .
CIRCULATION, 2018, 137 (22) :E783-E801