Heart disease detection using inertial Mann relaxed CQ algorithms for split feasibility problems

被引:2
作者
Suantai, Suthep [1 ]
Peeyada, Pronpat [2 ]
Fulga, Andreea [3 ]
Cholamjiak, Watcharaporn [2 ]
机构
[1] Chiang Mai Univ, Fac Sci, Dept Math, Chiang Mai 50200, Thailand
[2] Univ Phayao, Sch Sci, Phayao 56000, Thailand
[3] Univ Transilvania Brasov, Dept Math & Comp Sci, Brasov 500036, Romania
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 08期
关键词
weak convergence; inertial technique; split feasibility problem; data classification; heart disease data; SHRINKAGE-THRESHOLDING ALGORITHM; PROJECTION; CONVERGENCE; WEAK;
D O I
10.3934/math.2023962
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study investigates the weak convergence of the sequences generated by the inertial relaxed CQ algorithm with Mann's iteration for solving the split feasibility problem in real Hilbert spaces. Moreover, we present the advantage of our algorithm by choosing a wider range of parameters than the recent methods. Finally, we apply our algorithm to solve the classification problem using the heart disease dataset collected from the UCI machine learning repository as a training set. The result shows that our algorithm performs better than many machine learning methods and also extreme learning machine with fast iterative shrinkage-thresholding algorithm (FISTA) and inertial relaxed CQ algorithm (IRCQA) under consideration according to accuracy, precision, recall, and F1-score.
引用
收藏
页码:18898 / 18918
页数:21
相关论文
共 43 条
  • [1] An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping
    Alvarez, F
    Attouch, H
    [J]. SET-VALUED ANALYSIS, 2001, 9 (1-2): : 3 - 11
  • [2] A new self-adaptive CQ algorithm with an application to the LASSO problem
    Anh, Pham Ky
    Vinh, Nguyen The
    Dung, Vu Tien
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (04)
  • [3] [Anonymous], 2011, Cardiovascular disease
  • [4] Ansari Q. H., 2014, NONLINEAR ANAL, P281, DOI [10.1007/978-81-322-1883-89, DOI 10.1007/978-81-322-1883-89]
  • [5] Aravinthan K., 2016, INT J ADV RES COMPUT, V5, P421
  • [6] A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
    Beck, Amir
    Teboulle, Marc
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01): : 183 - 202
  • [7] Prediction of Heart Disease Using a Combination of Machine Learning and Deep Learning
    Bharti, Rohit
    Khamparia, Aditya
    Shabaz, Mohammad
    Dhiman, Gaurav
    Pande, Sagar
    Singh, Parneet
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [9] Censor Y., 1994, Numer. Algo., V8, P221, DOI [DOI 10.1007/BF02142692, 10.1007/BF02142692]
  • [10] Surface-Localized Transmission Eigenstates, Super-resolution Imaging, and Pseudo Surface Plasmon Modes
    Chow, Yat Tin
    Deng, Youjun
    He, Youzi
    Liu, Hongyu
    Wang, Xianchao
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2021, 14 (03) : 946 - 975