Optimal large-time estimates and singular limits for thermoelastic plate equations with the Fourier law

被引:9
作者
Chen, Wenhui [1 ,3 ]
Ikehata, Ryo [2 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou, Peoples R China
[2] Hiroshima Univ, Grad Sch Humanities & Social Sci, Dept Math, Div Educ Sci, Higashihiroshima, Japan
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
关键词
asymptotic profiles; singular limits; Cauchy problem; optimal estimates; thermoelastic plate equations; GLOBAL EXISTENCE; EXPONENTIAL STABILITY; PULLBACK ATTRACTORS; MAXIMAL REGULARITY; CAUCHY-PROBLEMS; ENERGY DECAY; SYSTEMS;
D O I
10.1002/mma.9349
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study asymptotic behaviors for classical thermoelastic plate equations with the Fourier law of heat conduction in the whole space Double-struck capital Rn$$ {\mathrm{\mathbb{R}}}<^>n $$, where we introduce a reduction methodology basing on third-order (in time) differential equations and refined Fourier analysis. We derive optimal growth estimates when n <= 3$$ n\leqslant 3 $$, bounded estimates when n=4$$ n=4 $$, and decay estimates when n > 5$$ n\geqslant 5 $$ for the vertical displacement in the L2$$ {L}<^>2 $$ norm. Particularly, the new critical dimension n=4$$ n=4 $$ for distinguishing the decisive role between the plate model and the Fourier law of heat conduction is discovered. Moreover, concerning the small thermal parameter in the temperature equation, we study the singular limit problem. We not only show global (in time) convergence of the vertical displacements between thermoelastic plates and structurally damped plates but also rigorously demonstrate a new second-order profile of the solution. Our methodology can settle several closely related problems in thermoelasticity.
引用
收藏
页码:14841 / 14866
页数:26
相关论文
共 43 条
  • [1] REGULARITY AND UPPER SEMICONTINUITY OF PULLBACK ATTRACTORS FOR A CLASS OF NONAUTONOMOUS THERMOELASTIC PLATE SYSTEMS
    Bezerra, Flank D. M.
    Carbone, Vera L.
    Nascimento, Marcelo J. D.
    Schiabel, Karina
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2019, 301 (02) : 395 - 419
  • [2] PULLBACK ATTRACTORS FOR A CLASS OF NON-AUTONOMOUS THERMOELASTIC PLATE SYSTEMS
    Bezerra, Flank D. M.
    Carbone, Vera L.
    Nascimento, Marcelo J. D.
    Schiabel, Karina
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09): : 3553 - 3571
  • [3] Chen WH, 2023, INDIANA U MATH J, V72, P489
  • [4] The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case
    Chen, Wenhui
    Ikehata, Ryo
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 292 : 176 - 219
  • [5] A new phenomenon in the critical exponent for structurally damped semi-linear evolution equations
    D'Abbicco, M.
    Ebert, M. R.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 149 : 1 - 40
  • [6] GENERATION OF SEMIGROUPS FOR THE THERMOELASTIC PLATE EQUATION WITH FREE BOUNDARY CONDITIONS
    Denk, Robert
    Shibata, Yoshihiro
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2019, 8 (02): : 301 - 313
  • [7] Maximal regularity for the thermoelastic plate equations with free boundary conditions
    Denk, Robert
    Shibata, Yoshihiro
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (01) : 215 - 261
  • [8] Denk R, 2006, ELECTRON J DIFFER EQ
  • [9] Global existence for semi-linear structurally damped σ-evolution models
    Duong Trieu Pham
    Mezadek, Mohamed Kainane
    Reissig, Michael
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (01) : 569 - 596
  • [10] Ebert M.R., 2018, Methods for Partial Differential Equations