Data-Driven Simulation of Generalized Bilinear Systems via Linear Time-Invariant Embedding

被引:6
|
作者
Markovsky, Ivan [1 ,2 ]
机构
[1] Int Ctr Numer Methods Engn CIMNE, Gran Capitan, Barcelona 08034, Spain
[2] Catalan Inst Res & Adv Studies ICREA, Barcelona 08010, Spain
关键词
Linear systems; Nonlinear systems; Mathematical models; Trajectory; Data models; Kernel; Difference equations; Behavioral approach; data-driven methods; nonlinear systems; system identification; ALGORITHMS;
D O I
10.1109/TAC.2022.3146726
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nonparameteric representations of linear time-invariant systems that use Hankel matrices constructed from data are the basis for data-driven simulation and control. This article extends the approach to data-driven simulation of a class of nonlinear systems, called generalized bilinear. The generalized bilinear class includes Hammerstein, finite-lag Volterra, and bilinear systems. The key step of the generalization is an embedding result that is of independent interest. The behavior of a nonlinear system is included into the behavior of a linear time-invariant system. The method proposed is illustrated and compared with a model-based method on simulation examples and real-life data.
引用
收藏
页码:1101 / 1106
页数:6
相关论文
共 50 条
  • [31] A TUTORIAL ON THE GEOMETRIC ANALYSIS OF LINEAR TIME-INVARIANT IMPLICIT SYSTEMS
    LEWIS, FL
    AUTOMATICA, 1992, 28 (01) : 119 - 137
  • [32] Data-driven Control of Unknown Linear Systems via Quantized Feedback
    Zhao, Feiran
    Li, Xingchen
    You, Keyou
    LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 168, 2022, 168
  • [33] Data-Driven Simulation for NARX Systems
    Mishra, Vikas K.
    Markovsky, Ivan
    Fazzi, Antonio
    Dreesen, Philippe
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1055 - 1059
  • [34] On Testing the Perspective Observability of Time-Continuous Linear Time-Invariant Systems
    Moschik, Sonja
    Stadler, Martin
    Dourdoumas, Nicolaos
    AT-AUTOMATISIERUNGSTECHNIK, 2012, 60 (12) : 735 - 742
  • [35] Interval Estimation Methods for Discrete-Time Linear Time-Invariant Systems
    Tang, Wentao
    Wang, Zhenhua
    Wang, Ye
    Raissi, Tarek
    Shen, Yi
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (11) : 4717 - 4724
  • [36] Direct Data-Driven Optimal Set-Point Tracking Control of Linear Discrete-Time Systems
    Xu, Yao
    Zhou, Linna
    Zhao, Jianguo
    Ma, Lei
    Yang, Chunyu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (08) : 3795 - 3799
  • [37] Subspace-based methods for the identification of linear time-invariant systems
    Viberg, M
    AUTOMATICA, 1995, 31 (12) : 1835 - 1851
  • [38] A modal measure for observability and perspective observability of linear time-invariant systems
    Seeber, Richard
    Dourdoumas, Nicolaos
    Horn, Martin
    AT-AUTOMATISIERUNGSTECHNIK, 2017, 65 (10) : 683 - 694
  • [39] Luenberger observers for linear time-invariant systems modelled by bond graphs
    Pichardo-Almarza, C
    Rahmani, A
    Dauphin-Tanguy, G
    Delgado, M
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2006, 12 (2-3) : 219 - 234
  • [40] On stabilization of a new class of linear time-invariant interval systems via constant state feedback control
    Hu, SQ
    Wang, J
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (11) : 2106 - 2111