Data-Driven Simulation of Generalized Bilinear Systems via Linear Time-Invariant Embedding

被引:6
|
作者
Markovsky, Ivan [1 ,2 ]
机构
[1] Int Ctr Numer Methods Engn CIMNE, Gran Capitan, Barcelona 08034, Spain
[2] Catalan Inst Res & Adv Studies ICREA, Barcelona 08010, Spain
关键词
Linear systems; Nonlinear systems; Mathematical models; Trajectory; Data models; Kernel; Difference equations; Behavioral approach; data-driven methods; nonlinear systems; system identification; ALGORITHMS;
D O I
10.1109/TAC.2022.3146726
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nonparameteric representations of linear time-invariant systems that use Hankel matrices constructed from data are the basis for data-driven simulation and control. This article extends the approach to data-driven simulation of a class of nonlinear systems, called generalized bilinear. The generalized bilinear class includes Hammerstein, finite-lag Volterra, and bilinear systems. The key step of the generalization is an embedding result that is of independent interest. The behavior of a nonlinear system is included into the behavior of a linear time-invariant system. The method proposed is illustrated and compared with a model-based method on simulation examples and real-life data.
引用
收藏
页码:1101 / 1106
页数:6
相关论文
共 50 条
  • [1] Data-Driven Distributed Spectrum Estimation for Linear Time-Invariant Systems
    Liu, Shenyu
    Cortes, Jorge
    Martinez, Sonia
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2025, 12 (01): : 1125 - 1136
  • [2] Robust data-driven predictive control for unknown linear time-invariant systems
    Hu, Kaijian
    Liu, Tao
    SYSTEMS & CONTROL LETTERS, 2024, 193
  • [3] Data-Driven Optimal Control of Bilinear Systems
    Yuan, Zhenyi
    Cortes, Jorge
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 (2479-2484): : 2479 - 2484
  • [4] Data-driven stabilization of an oscillating flow with linear time-invariant controllers
    Jussiau, William
    Leclercq, Colin
    Demourant, Fabrice
    Apkarian, Pierre
    JOURNAL OF FLUID MECHANICS, 2024, 999
  • [5] Data-Driven Model Predictive Techniques for Unknown Linear Time Invariant Systems
    Ghorbani, Majid
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 199 - 204
  • [6] Data-Driven Output Matching of Output-Generalized Bilinear and Linear Parameter-Varying systems
    Hemelhof, Leander
    Markovsky, Ivan
    Patrinos, Panagiotis
    2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,
  • [7] Fuzzy control of mobile robot via linear time-invariant extreme systems
    Bentalba, S
    El Hajjaji, A
    Rachid, A
    SPACE ROBOTICS (SPRO'98), 1999, : 31 - 35
  • [8] Data-Driven Modeling of Weakly Nonlinear Circuits via Generalized Transfer Function Approximation
    Carlucci, Antonio
    Gosea, Ion Victor
    Grivet-Talocia, Stefano
    IEEE ACCESS, 2025, 13 : 2746 - 2762
  • [9] Disturbance suppression of linear time-invariant systems based on disturbance estimator
    Wang, Xiaolong
    Yan, Shanshan
    Guo, Rongwei
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 1221 - 1226
  • [10] Data-Driven Identification of Dissipative Linear Models for Nonlinear Systems
    Sivaranjani, S.
    Agarwal, Etika
    Gupta, Vijay
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (09) : 4978 - 4985