On the computational complexity of Roman{2}-domination in grid graphs

被引:0
作者
Amouzandeh, Aflatoun [1 ]
Moradi, Ahmad [2 ]
机构
[1] Univ Siegen, Dept Math, Siegen, Germany
[2] Univ Mazandaran, Dept Math Sci, Babolsar, Iran
关键词
Computational complexity; Roman{2}-domination; APX-hardness; Grid graphs; DOMINATION;
D O I
10.1007/s10878-023-01024-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A Roman{2}-dominating function of a graph G = (V, E) is a function f : V ? {0, 1, 2} such that every vertex x ? V with f (x) = 0 either there exists at least one vertex y ? N(x) with f (y) = 2 or there are at least two vertices u, v ? N(x) with f (u) = f (v) = 1. The weight of a Roman{2}-dominating function f on G is defined to be the value of S-x?V f (x). The minimum weight of a Roman{2}-dominating function on G is called the Roman{2}-domination number of G. In this paper, we prove that the decision problem associated with Roman{2}-domination number is N P-complete even when restricted to subgraphs of grid graphs. Additionally, we answer an open question about the approximation hardness of Roman{2}-domination problem for bounded degree graphs.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Algorithmic aspects of total Roman {2}-domination in graphs [J].
Chakradhar, P. ;
Reddy, P. Venkata Subba .
COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2022, 7 (02) :183-192
[22]   Efficient Domination in Grid Graphs [J].
Hutson, Kevin R. ;
Hedetniemi, Stephen T. .
Journal of Combinatorial Mathematics and Combinatorial Computing, 2024, 122 :325-342
[23]   2-limited broadcast domination on grid graphs [J].
Slobodin, Aaron ;
MacGillivray, Gary ;
Myrvold, Wendy .
DISCRETE APPLIED MATHEMATICS, 2023, 338 :158-178
[24]   Chromatic transversal Roman domination in graphs [J].
Pushpam, P. Roushini Leely .
COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (01) :51-66
[25]   Unique response Roman domination in graphs [J].
Targhi, E. Ebrahimi ;
Rad, N. Jafari ;
Volkmann, L. .
DISCRETE APPLIED MATHEMATICS, 2011, 159 (11) :1110-1117
[26]   Inverse double Roman domination in graphs [J].
D' Souza, Wilma Laveena ;
Chaitra, V ;
Kumara, M. .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (06)
[27]   Co-Roman domination in graphs [J].
S ARUMUGAM ;
KARAM EBADI ;
MARTÍN MANRIQUE .
Proceedings - Mathematical Sciences, 2015, 125 :1-10
[28]   The Restrained Double Roman Domination in Graphs [J].
Changqing Xi ;
Jun Yue .
Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
[29]   Mixed double Roman domination in graphs [J].
Ahangar, H. Abdollahzadeh ;
Chellali, M. ;
Sheikholeslami, S. M. ;
Valenzuela-Tripodoro, J. C. .
COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
[30]   The Restrained Double Roman Domination in Graphs [J].
Xi, Changqing ;
Yue, Jun .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (01)