A 700 W•h•kg-1 Rechargeable Pouch Type Lithium Battery

被引:68
作者
Li, Quan [1 ,2 ]
Yang, Yang [1 ,2 ,3 ]
Yu, Xiqian [1 ,2 ,3 ]
Li, Hong [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Huairou Div, Beijing 101400, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL BATTERIES; ANODE; ELECTROLYTES; CELLS;
D O I
10.1088/0256-307X/40/4/048201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
High-energy-density rechargeable lithium batteries are being pursued by researchers because of their revolutionary potential nature. Current advanced practical lithium-ion batteries have an energy density of around 300 W center dot h center dot kg(-1). Continuing to increase the energy density of batteries to a higher level could lead to a major explosion development in some fields, such as electric aviation. Here, we have manufactured practical pouch-type rechargeable lithium batteries with both a gravimetric energy density of 711.3 W center dot h center dot kg(-1) and a volumetric energy density of 1653.65 W center dot h center dot L-1. This is achieved through the use of high-performance battery materials including high-capacity lithium-rich manganese-based cathode and thin lithium metal anode with high specific energy, combined with extremely advanced process technologies such as high-loading electrode preparation and lean electrolyte injection. In this battery material system, the structural stability of cathode material in a widened charge/discharge voltage range and the deposition/dissolution behavior of interfacial modified thin lithium electrode are studied.
引用
收藏
页数:6
相关论文
共 30 条
[1]  
[Anonymous], 2021, US DEP ENERGY NATL B
[2]  
[Anonymous], 2021, US DEP ENERGYS DOE A
[3]   Controlling Li deposition below the interface [J].
Cao, Wenzhuo ;
Li, Quan ;
Yu, Xiqian ;
Li, Hong .
ESCIENCE, 2022, 2 (01) :47-78
[4]   Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization [J].
Cao, Xia ;
Ren, Xiaodi ;
Zou, Lianfeng ;
Engelhard, Mark H. ;
Huang, William ;
Wang, Hansen ;
Matthews, Bethany E. ;
Lee, Hongkyung ;
Niu, Chaojiang ;
Arey, Bruce W. ;
Cui, Yi ;
Wang, Chongmin ;
Xiao, Jie ;
Liu, Jun ;
Xu, Wu ;
Zhang, Ji-Guang .
NATURE ENERGY, 2019, 4 (09) :796-805
[5]   A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments [J].
Chang, Zhi ;
Yang, Huijun ;
Zhu, Xingyu ;
He, Ping ;
Zhou, Haoshen .
NATURE COMMUNICATIONS, 2022, 13 (01)
[6]   Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries [J].
Chen, Ji ;
Fan, Xiulin ;
Li, Qin ;
Yang, Hongbin ;
Khoshi, M. Reza ;
Xu, Yaobin ;
Hwang, Sooyeon ;
Chen, Long ;
Ji, Xiao ;
Yang, Chongyin ;
He, Huixin ;
Wang, Chongmin ;
Garfunkel, Eric ;
Su, Dong ;
Borodin, Oleg ;
Wang, Chunsheng .
NATURE ENERGY, 2020, 5 (05) :386-397
[7]   Constructing a 700 Wh kg-1-level rechargeable lithium-sulfur pouch cell [J].
Cheng, Qian ;
Chen, Zi-Xian ;
Li, Xi-Yao ;
Hou, Li-Peng ;
Bi, Chen -Xi ;
Zhang, Xue-Qiang ;
Huang, Jia-Qi ;
Li, Bo-Quan .
JOURNAL OF ENERGY CHEMISTRY, 2023, 76 :181-186
[8]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[9]  
Edstrom K., 2022, BATTERY 2030 INVENTI
[10]   Cycling Performance of NMC811 Anode-Free Pouch Cells with 65 Different Electrolyte Formulations [J].
Eldesoky, A. ;
Louli, A. J. ;
Benson, A. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (12)