Single-cell gene set enrichment analysis and transfer learning for functional annotation of scRNA-seq data

被引:12
作者
Franchini, Melania [1 ,2 ]
Pellecchia, Simona [1 ]
Viscido, Gaetano [1 ]
Gambardella, Gennaro [1 ,3 ]
机构
[1] Telethon Inst Genet & Med, I-80078 Naples, Italy
[2] Univ Naples Federico II, Dept Elect Engn & Informat Technol, I-80125 Naples, Italy
[3] Univ Naples Federico II, Dept Chem Mat & Ind Engn, I-80125 Naples, Italy
关键词
REGULATORY NETWORK INFERENCE; IDENTIFICATION; PATHWAY; SYSTEMS; OBJECTS; ATLAS; TOOLS; TIME;
D O I
10.1093/nargab/lqad024
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Although an essential step, cell functional annotation often proves particularly challenging from single-cell transcriptional data. Several methods have been developed to accomplish this task. However, in most cases, these rely on techniques initially developed for bulk RNA sequencing or simply make use of marker genes identified from cell clustering followed by supervised annotation. To overcome these limitations and automatize the process, we have developed two novel methods, the single-cell gene set enrichment analysis (scGSEA) and the single-cell mapper (scMAP). scGSEA combines latent data representations and gene set enrichment scores to detect coordinated gene activity at single-cell resolution. scMAP uses transfer learning techniques to re-purpose and contextualize new cells into a reference cell atlas. Using both simulated and real datasets, we show that scGSEA effectively recapitulates recurrent patterns of pathways' activity shared by cells from different experimental conditions. At the same time, we show that scMAP can reliably map and contextualize new single-cell profiles on a breast cancer atlas we recently released. Both tools are provided in an effective and straightforward workflow providing a framework to determine cell function and significantly improve annotation and interpretation of scRNA-seq data.
引用
收藏
页数:9
相关论文
共 78 条
  • [1] Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/nmeth.4463, 10.1038/NMETH.4463]
  • [2] Single-cell transcriptional changes associated with drug tolerance and response to combination therapies in cancer
    Aissa, Alexandre F.
    Islam, Abul B. M. M. K.
    Ariss, Majd M.
    Go, Cammille C.
    Rader, Alexandra E.
    Conrardy, Ryan D.
    Gajda, Alexa M.
    Rubio-Perez, Carlota
    Valyi-Nagy, Klara
    Pasquinelli, Mary
    Feldman, Lawrence E.
    Green, Stefan J.
    Lopez-Bigas, Nuria
    Frolov, Maxim, V
    Benevolenskaya, Elizaveta, V
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [3] A single-cell transcriptomic atlas characterizes ageing tissues in the mouse
    Almanzar, Nicole
    Antony, Jane
    Baghel, Ankit S.
    Bakerman, Isaac
    Bansal, Ishita
    Barres, Ben A.
    Beachy, Philip A.
    Berdnik, Daniela
    Bilen, Biter
    Brownfield, Douglas
    Cain, Corey
    Chan, Charles K. F.
    Chen, Michelle B.
    Clarke, Michael F.
    Conley, Stephanie D.
    Darmanis, Spyros
    Demers, Aaron
    Demir, Kubilay
    De Morree, Antoine
    du Bois, Tessa Divita Haley
    Ebadi, Hamid
    Espinoza, F. Hernan
    Fish, Matt
    Gan, Qiang
    George, Benson M.
    Gillich, Astrid
    Gomez-Sjoberg, Rafael
    Green, Foad
    Genetiano, Geraldine
    Gu, Xueying
    Gulati, Gunsagar S.
    Hahn, Oliver
    Haney, Michael Seamus
    Hang, Yan
    Harris, Lincoln
    He, Mu
    Hosseinzadeh, Shayan
    Huang, Albin
    Huang, Kerwyn Casey
    Iram, Tal
    Isobe, Taichi
    Ives, Feather
    Jones, Robert C.
    Kao, Kevin S.
    Karkanias, Jim
    Karnam, Guruswamy
    Keller, Andreas
    Kershner, Aaron M.
    Khoury, Nathalie
    Kim, Seung K.
    [J]. NATURE, 2020, 583 (7817) : 590 - +
  • [4] Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference
    Aubin-Frankowski, Pierre-Cyril
    Vert, Jean-Philippe
    [J]. BIOINFORMATICS, 2020, 36 (18) : 4774 - 4780
  • [5] Genetic and transcriptional evolution alters cancer cell line drug response
    Ben-David, Uri
    Siranosian, Benjamin
    Ha, Gavin
    Tang, Helen
    Oren, Yaara
    Hinohara, Kunihiko
    Strathdee, Craig A.
    Dempster, Joshua
    Lyons, Nicholas J.
    Burns, Robert
    Nag, Anwesha
    Kugener, Guillaume
    Cimini, Beth
    Tsvetkov, Peter
    Maruvka, Yosef E.
    O'Rourke, Ryan
    Garrity, Anthony
    Tubelli, Andrew A.
    Bandopadhayay, Pratiti
    Tsherniak, Aviad
    Vazquez, Francisca
    Wong, Bang
    Birger, Chet
    Ghandi, Mahmoud
    Thorner, Aaron R.
    Bittker, Joshua A.
    Meyerson, Matthew
    Getz, Gad
    Beroukhim, Rameen
    Golub, Todd R.
    [J]. NATURE, 2018, 560 (7718) : 325 - +
  • [6] Human cerebral organoids recapitulate gene expression programs of fetal neocortex development
    Camp, J. Gray
    Badsha, Farhath
    Florio, Marta
    Kanton, Sabina
    Gerber, Tobias
    Wilsch-Braeuninger, Michaela
    Lewitus, Eric
    Sykes, Alex
    Hevers, Wulf
    Lancaster, Madeline
    Knoblich, Juergen A.
    Lachmann, Robert
    Paeaebo, Svante
    Huttner, Wieland B.
    Treutlein, Barbara
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (51) : 15672 - 15677
  • [7] Check your cultures! A list of cross-contaminated or misidentified cell lines
    Capes-Davis, Amanda
    Theodosopoulos, George
    Atkin, Isobel
    Drexler, Hans G.
    Kohara, Arihiro
    MacLeod, Roderick A. F.
    Masters, John R.
    Nakamura, Yukio
    Reid, Yvonne A.
    Reddel, Roger R.
    Freshney, R. Ian
    [J]. INTERNATIONAL JOURNAL OF CANCER, 2010, 127 (01) : 1 - 8
  • [8] Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures
    Chan, Thalia E.
    Stumpf, Michael P. H.
    Babtie, Ann C.
    [J]. CELL SYSTEMS, 2017, 5 (03) : 251 - +
  • [9] Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data
    Chen, Shuonan
    Mar, Jessica C.
    [J]. BMC BIOINFORMATICS, 2018, 19
  • [10] R code and downstream analysis objects for the scRNA-seq atlas of normal and tumorigenic human breast tissue
    Chen, Yunshun
    Pal, Bhupinder
    Lindeman, Geoffrey J.
    Visvader, Jane E.
    Smyth, Gordon K.
    [J]. SCIENTIFIC DATA, 2022, 9 (01)