Single-cell gene set enrichment analysis and transfer learning for functional annotation of scRNA-seq data

被引:12
作者
Franchini, Melania [1 ,2 ]
Pellecchia, Simona [1 ]
Viscido, Gaetano [1 ]
Gambardella, Gennaro [1 ,3 ]
机构
[1] Telethon Inst Genet & Med, I-80078 Naples, Italy
[2] Univ Naples Federico II, Dept Elect Engn & Informat Technol, I-80125 Naples, Italy
[3] Univ Naples Federico II, Dept Chem Mat & Ind Engn, I-80125 Naples, Italy
关键词
REGULATORY NETWORK INFERENCE; IDENTIFICATION; PATHWAY; SYSTEMS; OBJECTS; ATLAS; TOOLS; TIME;
D O I
10.1093/nargab/lqad024
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Although an essential step, cell functional annotation often proves particularly challenging from single-cell transcriptional data. Several methods have been developed to accomplish this task. However, in most cases, these rely on techniques initially developed for bulk RNA sequencing or simply make use of marker genes identified from cell clustering followed by supervised annotation. To overcome these limitations and automatize the process, we have developed two novel methods, the single-cell gene set enrichment analysis (scGSEA) and the single-cell mapper (scMAP). scGSEA combines latent data representations and gene set enrichment scores to detect coordinated gene activity at single-cell resolution. scMAP uses transfer learning techniques to re-purpose and contextualize new cells into a reference cell atlas. Using both simulated and real datasets, we show that scGSEA effectively recapitulates recurrent patterns of pathways' activity shared by cells from different experimental conditions. At the same time, we show that scMAP can reliably map and contextualize new single-cell profiles on a breast cancer atlas we recently released. Both tools are provided in an effective and straightforward workflow providing a framework to determine cell function and significantly improve annotation and interpretation of scRNA-seq data.
引用
收藏
页数:9
相关论文
共 78 条
[1]  
Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/NMETH.4463, 10.1038/nmeth.4463]
[2]   Single-cell transcriptional changes associated with drug tolerance and response to combination therapies in cancer [J].
Aissa, Alexandre F. ;
Islam, Abul B. M. M. K. ;
Ariss, Majd M. ;
Go, Cammille C. ;
Rader, Alexandra E. ;
Conrardy, Ryan D. ;
Gajda, Alexa M. ;
Rubio-Perez, Carlota ;
Valyi-Nagy, Klara ;
Pasquinelli, Mary ;
Feldman, Lawrence E. ;
Green, Stefan J. ;
Lopez-Bigas, Nuria ;
Frolov, Maxim, V ;
Benevolenskaya, Elizaveta, V .
NATURE COMMUNICATIONS, 2021, 12 (01)
[3]   A single-cell transcriptomic atlas characterizes ageing tissues in the mouse [J].
Almanzar, Nicole ;
Antony, Jane ;
Baghel, Ankit S. ;
Bakerman, Isaac ;
Bansal, Ishita ;
Barres, Ben A. ;
Beachy, Philip A. ;
Berdnik, Daniela ;
Bilen, Biter ;
Brownfield, Douglas ;
Cain, Corey ;
Chan, Charles K. F. ;
Chen, Michelle B. ;
Clarke, Michael F. ;
Conley, Stephanie D. ;
Darmanis, Spyros ;
Demers, Aaron ;
Demir, Kubilay ;
De Morree, Antoine ;
du Bois, Tessa Divita Haley ;
Ebadi, Hamid ;
Espinoza, F. Hernan ;
Fish, Matt ;
Gan, Qiang ;
George, Benson M. ;
Gillich, Astrid ;
Gomez-Sjoberg, Rafael ;
Green, Foad ;
Genetiano, Geraldine ;
Gu, Xueying ;
Gulati, Gunsagar S. ;
Hahn, Oliver ;
Haney, Michael Seamus ;
Hang, Yan ;
Harris, Lincoln ;
He, Mu ;
Hosseinzadeh, Shayan ;
Huang, Albin ;
Huang, Kerwyn Casey ;
Iram, Tal ;
Isobe, Taichi ;
Ives, Feather ;
Jones, Robert C. ;
Kao, Kevin S. ;
Karkanias, Jim ;
Karnam, Guruswamy ;
Keller, Andreas ;
Kershner, Aaron M. ;
Khoury, Nathalie ;
Kim, Seung K. .
NATURE, 2020, 583 (7817) :590-+
[4]   Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference [J].
Aubin-Frankowski, Pierre-Cyril ;
Vert, Jean-Philippe .
BIOINFORMATICS, 2020, 36 (18) :4774-4780
[5]   Genetic and transcriptional evolution alters cancer cell line drug response [J].
Ben-David, Uri ;
Siranosian, Benjamin ;
Ha, Gavin ;
Tang, Helen ;
Oren, Yaara ;
Hinohara, Kunihiko ;
Strathdee, Craig A. ;
Dempster, Joshua ;
Lyons, Nicholas J. ;
Burns, Robert ;
Nag, Anwesha ;
Kugener, Guillaume ;
Cimini, Beth ;
Tsvetkov, Peter ;
Maruvka, Yosef E. ;
O'Rourke, Ryan ;
Garrity, Anthony ;
Tubelli, Andrew A. ;
Bandopadhayay, Pratiti ;
Tsherniak, Aviad ;
Vazquez, Francisca ;
Wong, Bang ;
Birger, Chet ;
Ghandi, Mahmoud ;
Thorner, Aaron R. ;
Bittker, Joshua A. ;
Meyerson, Matthew ;
Getz, Gad ;
Beroukhim, Rameen ;
Golub, Todd R. .
NATURE, 2018, 560 (7718) :325-+
[6]   Human cerebral organoids recapitulate gene expression programs of fetal neocortex development [J].
Camp, J. Gray ;
Badsha, Farhath ;
Florio, Marta ;
Kanton, Sabina ;
Gerber, Tobias ;
Wilsch-Braeuninger, Michaela ;
Lewitus, Eric ;
Sykes, Alex ;
Hevers, Wulf ;
Lancaster, Madeline ;
Knoblich, Juergen A. ;
Lachmann, Robert ;
Paeaebo, Svante ;
Huttner, Wieland B. ;
Treutlein, Barbara .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (51) :15672-15677
[7]   Check your cultures! A list of cross-contaminated or misidentified cell lines [J].
Capes-Davis, Amanda ;
Theodosopoulos, George ;
Atkin, Isobel ;
Drexler, Hans G. ;
Kohara, Arihiro ;
MacLeod, Roderick A. F. ;
Masters, John R. ;
Nakamura, Yukio ;
Reid, Yvonne A. ;
Reddel, Roger R. ;
Freshney, R. Ian .
INTERNATIONAL JOURNAL OF CANCER, 2010, 127 (01) :1-8
[8]   Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures [J].
Chan, Thalia E. ;
Stumpf, Michael P. H. ;
Babtie, Ann C. .
CELL SYSTEMS, 2017, 5 (03) :251-+
[9]   Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data [J].
Chen, Shuonan ;
Mar, Jessica C. .
BMC BIOINFORMATICS, 2018, 19
[10]   R code and downstream analysis objects for the scRNA-seq atlas of normal and tumorigenic human breast tissue [J].
Chen, Yunshun ;
Pal, Bhupinder ;
Lindeman, Geoffrey J. ;
Visvader, Jane E. ;
Smyth, Gordon K. .
SCIENTIFIC DATA, 2022, 9 (01)