Novel thermoelectric generator heat exchanger for indirect heat recovery from molten CuCl in the thermochemical Cu-Cl cycle of hydrogen production

被引:19
作者
Mohammadi, Amir [1 ,2 ]
Jianu, Ofelia A. [1 ]
机构
[1] Univ Windsor, Mech Automot & Mat Engn Dept, Windsor, ON N9B 3P4, Canada
[2] Univ Windsor, Mech Automot & Mat Engn Dept, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Thermoelectric generator; Hydrogen; Thermolysis; Heat transfer; Casting; extrusion; HIGH-TEMPERATURE EXHAUST; PARAMETER OPTIMIZATION; NUMERICAL-MODEL; SALT DROPLETS; SOLIDIFICATION; WATER; FLOW; ELECTROLYSIS; ENERGY; TUBE;
D O I
10.1016/j.ijhydene.2022.10.251
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The looming threat of global warming has elicited efforts to develop reliable sustainable energy resources. Hydrogen as a clean fuel is deemed a potential solution to the problem of storage of power from renewable energy technologies. Among current thermochemical hydrogen generation methods, the thermochemical copper-chlorine (Cu-Cl) cycle is of high interest owing to lower temperature requirements. Present study investigates a novel heat exchanger comprising a thermoelectric generator (TEG) to recover heat from high temperature molten CuCl exiting the thermolysis reactor. Employing casting/extrusion method, the performance of the proposed heat exchanger is numerically examined using COMSOL Multiphysics. Results indicate that maximum generated power could exceed 40 W at the matching current of 4.5 A. Maximum energy conversion efficiency yields to 7.1%. Results demonstrate that TEG performance boosts with increasing the inlet Re number, particularly at the hot end. For the molten CuCl chamber, findings denote that there is a 36% discrepancy between highest and lowest Re numbers. Similarly, the highest efficiency value pertains to the case with the highest inlet velocity. Moreover, the highest temperature difference between inlet and outlet of the cooling water is about 28 degrees C and 10 degrees C for the lowest and highest inlet Re numbers, respectively. Average deviation from anticipated friction factor and Nusselt number are 0.31% and 12.62%, respectively. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5001 / 5017
页数:17
相关论文
共 28 条
[11]   Indirect contact heat recovery with solidification in thermochemical hydrogen production [J].
Ghandehariun, S. ;
Naterer, G. F. ;
Rosen, M. A. ;
Wang, Z. .
ENERGY CONVERSION AND MANAGEMENT, 2014, 82 :212-218
[12]   Co-production of Hydrogen and Copper from Copper Waste Using a Thermochemical Cu-Cl Cycle [J].
Khalid, Farrukh ;
Dincer, Ibrahim ;
Rosen, Marc A. .
ENERGY & FUELS, 2018, 32 (02) :2137-2144
[13]   Recent Canadian advances in nuclear-based hydrogen production and the thermochemical Cu-Cl cycle [J].
Naterer, G. ;
Suppiah, S. ;
Lewis, M. ;
Gabriel, K. ;
Dincer, I. ;
Rosen, M. A. ;
Fowler, M. ;
Rizvi, G. ;
Easton, E. B. ;
Ikeda, B. M. ;
Kaye, M. H. ;
Lu, L. ;
Pioro, I. ;
Spekkens, P. ;
Tremaine, P. ;
Mostaghimi, J. ;
Avsec, J. ;
Jiang, J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (07) :2901-2917
[14]   Electrolysis of CuCl/HCl aqueous system in Cu-Cl thermochemical cycle for green hydrogen production: Investigations on alternative to platinum anode [J].
Chaudhary, Venus ;
Parvatalu, Damaraju ;
Nirukhe, Ashwini B. ;
Yadav, Ganapati D. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 80 :1379-1391
[15]   Clean hydrogen production with the Cu-Cl cycle - Progress of international consortium, II: Simulations, thermochemical data and materials [J].
Naterer, G. F. ;
Suppiah, S. ;
Stolberg, L. ;
Lewis, M. ;
Ferrandon, M. ;
Wang, Z. ;
Dincer, I. ;
Gabriel, K. ;
Rosen, M. A. ;
Secnik, E. ;
Easton, E. B. ;
Trevani, L. ;
Pioro, I. ;
Tremaine, P. ;
Lvov, S. ;
Jiang, J. ;
Rizvi, G. ;
Ikeda, B. M. ;
Lu, L. ;
Kaye, M. ;
Smith, W. R. ;
Mostaghimi, J. ;
Spekkens, P. ;
Fowler, M. ;
Avsec, J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (24) :15486-15501
[16]   A comparative life cycle analysis of hydrogen production via thermochemical water splitting using a Cu-Cl cycle [J].
Ozbilen, Ahmet ;
Dincer, Ibrahim ;
Rosen, Marc A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (17) :11321-11327
[17]   Design of systems for hydrogen production based on the Cu-Cl thermochemical water decomposition cycle: Configurations and performance [J].
Orhan, Mehmet F. ;
Dincer, Ibrahim ;
Rosen, Marc A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (17) :11309-11320
[18]   Exploring two-phase bubble dynamics and convective mass transfer in thermochemical Cu-Cl cycle for hydrogen production [J].
Mohammadi, Amir ;
Jianu, Ofelia A. ;
Acar, Canan .
CHEMICAL ENGINEERING SCIENCE, 2025, 309
[19]   Hydrogen production by the Cu-Cl thermochemical cycle: Investigation of the key step of hydrolysing CuCl2 to Cu2OCl2 and HCl using a spray reactor [J].
Ferrandon, Magali S. ;
Lewis, Michele A. ;
Tatterson, David F. ;
Gross, Adam ;
Doizi, Denis ;
Croize, L. ;
Dauvois, V. ;
Roujou, J. L. ;
Zanella, Y. ;
Carles, P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (03) :992-1000
[20]   CuCl2 Nanoparticles Dispersed in Activated Carbon Fibers for the Oxygen Production Step of the Cu-Cl Thermochemical Water Splitting Cycle [J].
Bhaduri, Bhaskar ;
Prajapati, Yogendra Nath ;
Sharma, Ashutosh ;
Verma, Nishith .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (48) :15633-15641