MoS2-PVDF/PDMS based flexible hybrid piezo-triboelectric nanogenerator for harvesting mechanical energy

被引:50
|
作者
Singh, Vishal [1 ]
Singh, Bharti [1 ]
机构
[1] Delhi Technol Univ, Dept Appl Phys, Delhi 110042, India
关键词
PVDF; MoS2; Piezoelectricity; Triboelectricity; Hybrid nanogenerator; PIEZOELECTRIC NANOGENERATOR; HYDROTHERMAL SYNTHESIS; SURFACE MODIFICATION; PVDF; NANOCOMPOSITE; PHASE; TRANSPARENT; ENHANCEMENT; PERFORMANCE; NANOSHEETS;
D O I
10.1016/j.jallcom.2023.168850
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A green energy generating device, which can harvest the energy from ambient sources present in our surroundings to fulfill the energy needs of future technologies without polluting our surrounding are be-coming more in demand. To extract electrical energy from mechanical vibrations, nanogenerators based on piezoelectric and triboelectric phenomena are being explored recently. When a piezoelectric material is used as one of the two components in the triboelectric nanogenerator, these two effects can be coupled. It is possible to further improve the output efficiency of the nanogenerator by integrating these two effects to form a hybrid nanogenerator. In this work, we have fabricated the different piezoelectric energy harvesters based on MoS2-PVDF materials by varying the weight percentage (0%, 2%, 5% and 7 wt%) of MoS2. The piezoelectric output of the PVDF was found to be increased due to the incorporation of MoS2. In comparison to bare PVDF film, the piezoelectric nanogenerator based on 7 wt% of MoS2 as filler in PVDF shows nearly 2-fold increase in output voltage from 9.4 V to 18.0 V. Further, a piezo-tribo based hybrid nanogenerator (HNG) is fabricated by integrating the MoS2-PVDF film having highest piezoelectric output with PDMS thin film as two layers required for the HNG device. It may be highlighted that the introduction of MoS2 in PVDF matrix not only enhanced the piezoelectric output which may be attributed to the intrinsic piezoelectric nature of MoS2 and enhanced beta-phase crystallization, the triboelectric charge generation also gets en-hanced. The enhanced hybrid output performance may be attributed to its increased dielectric property and surface roughness. The MoS2-PVDF/PDMS based HNG provides an output voltage of 35.3 V, which is 1.6 times greater than the HNG based on bare PVDF/PDMS layers. The generated output power successfully lit up 21 LED bulbs by the application of a small mechanical force generated by finger tapping and could charge a 10 mu F capacitor to similar to 9 V in similar to 400 s. The present findings suggest that by hybridizing different device mechanism in a single device the energy harvesting performance of resulting HNG can be enhanced, making it possible to drive smart wearable electronic devices.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Flexible hybrid nanogenerator coupling of triboelectric and photovoltaic effects based on fluoride dielectric regulation for energy harvesting
    Yang, Yujue
    Xu, Bingang
    Yin, Xin
    Liu, Xinlong
    Tan, Di
    Wang, Qian
    NANO ENERGY, 2024, 126
  • [22] Highly Flexible Triboelectric Nanogenerator Based on PVDF Nanofibers for Biomechanical Energy Harvesting and Telerehabilitation via Human Body Movement
    Varghese, Harris
    Athira, B. S.
    Chandran, Achu
    IEEE SENSORS JOURNAL, 2023, 23 (13) : 13925 - 13932
  • [23] A triboelectric nanogenerator based on cosmetic fixing powder for mechanical energy harvesting
    Kequan Xia
    Yue Chi
    Jiangming Fu
    Zhiyuan Zhu
    Hongze Zhang
    Chaolin Du
    Zhiwei Xu
    Microsystems & Nanoengineering, 5
  • [24] A triboelectric nanogenerator based on cosmetic fixing powder for mechanical energy harvesting
    Xia, Kequan
    Chi, Yue
    Fu, Jiangming
    Zhu, Zhiyuan
    Zhang, Hongze
    Du, Chaolin
    Xu, Zhiwei
    MICROSYSTEMS & NANOENGINEERING, 2019, 5 (1)
  • [25] Flexible ZnO-PVDF/PTFE based piezo-tribo hybrid nanogenerator
    Singh, Huidrom Hemojit
    Khare, Neeraj
    NANO ENERGY, 2018, 51 : 216 - 222
  • [26] A wearable flexible triboelectric nanogenerator for bio-mechanical energy harvesting and badminton monitoring
    Wu, Min
    Li, Zheng
    HELIYON, 2024, 10 (10)
  • [27] A one-structure-layer PDMS/Mxenes based stretchable triboelectric nanogenerator for simultaneously harvesting mechanical and light energy
    Liu, Yaqian
    Li, Enlong
    Yan, Yujie
    Lin, Zenan
    Chen, Qizhen
    Wang, Xiumei
    Shan, Liuting
    Chen, Huipeng
    Guo, Tailiang
    NANO ENERGY, 2021, 86
  • [28] Highly-Flexible Piezoelectric Nanogenerator based on BZT/PVDF-HFP for Mechanical Energy Harvesting
    Jeder, Khawla
    Bouhamed, Ayda
    Khemakhem, Hamadi
    Kanoun, Olfa
    2021 18TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2021, : 1360 - 1365
  • [29] Mechanical energy harvesting through a novel flexible contact-separation mode triboelectric nanogenerator based on metallized porous PDMS and Parylene-C
    Mariello, M.
    Scarpa, E.
    Algieri, L.
    Guido, F.
    Mastronardi, V. M.
    Qualtieri, A.
    De Vittorio, M.
    2019 19TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS), 2020,
  • [30] Hybrid piezo/triboelectric nanogenerator for stray magnetic energy harvesting and self-powered sensing applications
    Yang, Aijun
    Wang, Chaoyu
    Ma, Jing
    Fan, Chengyu
    Lv, Pinlei
    Bai, Yuchen
    Rong, Yiming
    Wang, Xiaohua
    Yuan, Huan
    Rong, Mingzhe
    HIGH VOLTAGE, 2021, 6 (06) : 978 - 985