MoS2-PVDF/PDMS based flexible hybrid piezo-triboelectric nanogenerator for harvesting mechanical energy

被引:51
|
作者
Singh, Vishal [1 ]
Singh, Bharti [1 ]
机构
[1] Delhi Technol Univ, Dept Appl Phys, Delhi 110042, India
关键词
PVDF; MoS2; Piezoelectricity; Triboelectricity; Hybrid nanogenerator; PIEZOELECTRIC NANOGENERATOR; HYDROTHERMAL SYNTHESIS; SURFACE MODIFICATION; PVDF; NANOCOMPOSITE; PHASE; TRANSPARENT; ENHANCEMENT; PERFORMANCE; NANOSHEETS;
D O I
10.1016/j.jallcom.2023.168850
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A green energy generating device, which can harvest the energy from ambient sources present in our surroundings to fulfill the energy needs of future technologies without polluting our surrounding are be-coming more in demand. To extract electrical energy from mechanical vibrations, nanogenerators based on piezoelectric and triboelectric phenomena are being explored recently. When a piezoelectric material is used as one of the two components in the triboelectric nanogenerator, these two effects can be coupled. It is possible to further improve the output efficiency of the nanogenerator by integrating these two effects to form a hybrid nanogenerator. In this work, we have fabricated the different piezoelectric energy harvesters based on MoS2-PVDF materials by varying the weight percentage (0%, 2%, 5% and 7 wt%) of MoS2. The piezoelectric output of the PVDF was found to be increased due to the incorporation of MoS2. In comparison to bare PVDF film, the piezoelectric nanogenerator based on 7 wt% of MoS2 as filler in PVDF shows nearly 2-fold increase in output voltage from 9.4 V to 18.0 V. Further, a piezo-tribo based hybrid nanogenerator (HNG) is fabricated by integrating the MoS2-PVDF film having highest piezoelectric output with PDMS thin film as two layers required for the HNG device. It may be highlighted that the introduction of MoS2 in PVDF matrix not only enhanced the piezoelectric output which may be attributed to the intrinsic piezoelectric nature of MoS2 and enhanced beta-phase crystallization, the triboelectric charge generation also gets en-hanced. The enhanced hybrid output performance may be attributed to its increased dielectric property and surface roughness. The MoS2-PVDF/PDMS based HNG provides an output voltage of 35.3 V, which is 1.6 times greater than the HNG based on bare PVDF/PDMS layers. The generated output power successfully lit up 21 LED bulbs by the application of a small mechanical force generated by finger tapping and could charge a 10 mu F capacitor to similar to 9 V in similar to 400 s. The present findings suggest that by hybridizing different device mechanism in a single device the energy harvesting performance of resulting HNG can be enhanced, making it possible to drive smart wearable electronic devices.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Enhanced Mechanical Energy Harvesting in Triboelectric Nanogenerator by the Reinforcement of Polypyrrole-Decorated rGO Sheets in PDMS
    Elavathingal Johny, Jelmy
    Jose, Divya
    Kochuveetil Vavachan, Vijoy
    Kachirayil Joseph, Saji
    John, Honey
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (13)
  • [22] Fabrication and vibrational energy harvesting characterization of flexible piezoelectric nanogenerator (PEN) based on PVDF/PZT
    Koc, Muhterem
    Parali, Levent
    San, Osman
    POLYMER TESTING, 2020, 90 (90)
  • [23] Electrospun PVDF-MoSe2 nanofibers based hybrid triboelectric nanogenerator for self-powered water splitting system
    Singh, Vishal
    Rana, Shilpa
    Bokolia, Renuka
    Panwar, Amrish K.
    Meena, Ramcharan
    Singh, Bharti
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 978
  • [24] High-performance triboelectric nanogenerator using ZIF-67/PVDF hybrid film for energy harvesting
    Babu, Anjaly
    Ruthvik, K.
    Supraja, P.
    Navaneeth, M.
    Kumar, K. Uday
    Kumar, R. Rakesh
    Prakash, K.
    Raju, N.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (33)
  • [25] Unveiling the latent potential: Ni/CoFe2O4-loaded electrospun PVDF hybrid composite-based triboelectric nanogenerator for mechanical energy harvesting applications
    Venkatesan, Hema Malini
    Woo, Insun
    Yoon, Jae Uk
    Gajula, Prasad
    Arun, Anand Prabu
    Bae, Jin Woo
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2025, 8 (02)
  • [26] A Hybrid Piezoelectric and Triboelectric Nanogenerator with PVDF Nanoparticles and Leaf-Shaped Microstructure PTFE Film for Scavenging Mechanical Energy
    Zhu, Jianxiong
    Zhu, Yali
    Wang, Xiaohu
    ADVANCED MATERIALS INTERFACES, 2018, 5 (02):
  • [27] A High-Performance Flexible Triboelectric Nanogenerator Based on Double-Sided Patterned TiN/PDMS Composite Film for Human Energy Harvesting
    Xiao, Yuan
    Lv, Xiaolai
    Yang, Leipeng
    Niu, Mingyuan
    Liu, Jinchao
    ENERGY TECHNOLOGY, 2021, 9 (12)
  • [28] Flexible ZnO:PVDF based free standing piezoelectric nanogenerator for vibrational energy harvesting and wearable shoe insole pedometer sensor
    Mahapatra, Abhinav
    Ajimsha, R. S.
    Ittoop, M. O.
    Sharma, Arpit
    Karmakar, S.
    Shaikh, Aasiya
    Sankar, P. Ram
    Misra, Pankaj
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 960
  • [29] Nanopillar-array architectured PDMS-based triboelectric nanogenerator integrated with a windmill model for effective wind energy harvesting
    Dudem, Bhaskar
    Nghia Dinh Huynh
    Kim, Wook
    Kim, Dong Hyun
    Hwang, Hee Jae
    Choi, Dukhyun
    Yu, Jae Su
    NANO ENERGY, 2017, 42 : 269 - 281
  • [30] Development of a Flexible Polyimide-Thermoplastic Polyurethane Based Triboelectric Nanogenerator for Energy Harvesting Applications
    Adineh, A. Haji
    Palaniappan, V.
    Maddipatla, D.
    Masihi, S.
    Narakathu, B. B.
    Bazuin, B. J.
    Atashbar, M. Z.
    2023 IEEE SENSORS, 2023,