Parallel Automatic History Matching Algorithm Using Reinforcement Learning

被引:6
作者
Alolayan, Omar S. [1 ]
Alomar, Abdullah O. [2 ]
Williams, John R. [1 ]
机构
[1] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA
[2] MIT, Elect Engn & Comp Sci, Cambridge, MA 02139 USA
关键词
artificial intelligence; reinforcement learning; parallel actor-critic; history matching; reservoir simulation; ENSEMBLE KALMAN FILTER; MEDIA;
D O I
10.3390/en16020860
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Reformulating the history matching problem from a least-square mathematical optimization problem into a Markov Decision Process introduces a method in which reinforcement learning can be utilized to solve the problem. This method provides a mechanism where an artificial deep neural network agent can interact with the reservoir simulator and find multiple different solutions to the problem. Such a formulation allows for solving the problem in parallel by launching multiple concurrent environments enabling the agent to learn simultaneously from all the environments at once, achieving significant speed up.
引用
收藏
页数:27
相关论文
共 52 条
  • [1] Challenges for the Repeatability of Deep Learning Models
    Alahmari, Saeed S.
    Goldgof, Dmitry B.
    Mouton, Peter R.
    Hall, Lawrence O.
    [J]. IEEE ACCESS, 2020, 8 : 211860 - 211868
  • [2] Towards better shale gas production forecasting using transfer learning
    Alolayan, Omar S.
    Raymond, Samuel J.
    Montgomery, Justin B.
    Williams, John R.
    [J]. UPSTREAM OIL AND GAS TECHNOLOGY, 2022, 9
  • [3] Arief I., 2013, THESIS U STAVANGER S, DOI [10.13140/RG.2.2.18532.01925, DOI 10.13140/RG.2.2.18532.01925]
  • [4] Markov-switching vector autoregressive neural networks and sensitivity analysis of environment, economic growth and petrol prices
    Bildirici, Melike
    Ersin, Ozgur
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (31) : 31630 - 31655
  • [5] Bruyelle Jeremie., 2019, Day 2 Tue, p10 2019, DOI DOI 10.2118/198635-MS
  • [6] Diederichs Elmar., 2019, Journal of Autonomous Intelligence, V2:25, DOI DOI 10.32629/JAI.V2I2.45
  • [7] Durlofsky L.J., 2005, P 8 INT FOR RES SIM
  • [8] Hammoudeh A., 2018, A concise introduction to reinforcement learning, DOI DOI 10.13140/RG.2.2.31027.53285
  • [9] Hasselt H.V., 2015, arXiv, DOI [10.1609/aaai.v30i1.10295, DOI 10.1609/AAAI.V30I1.10295]
  • [10] History Matching Using the Ensemble Kalman Filter on a North Sea Field Case
    Haugen, Vibeke
    Naevdal, Geir
    Natvik, Lars-Jorgen
    Evensen, Geir
    Berg, Aina M.
    Flornes, Kristin M.
    [J]. SPE JOURNAL, 2008, 13 (04): : 382 - 391