Total Domination on Tree Operators

被引:3
|
作者
Bermudo, Sergio [1 ]
机构
[1] Univ Pablo de Olavide, Dept Econ Quantitat Methods & Econ Hist, Carretera Utrera Km 1, Seville 41013, Spain
关键词
Total domination; graph operation; POLYNOMIALS;
D O I
10.1007/s00009-022-02236-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with vertex set V and edge set E, a set D subset of V is a total dominating set if every vertex v is an element of V has at least one neighbor in D. The minimum cardinality among all total dominating sets is called the total domination number, and it is denoted by gamma t(G).Given an arbitrary tree graph T, we consider some operators acting on this graph; S(T),R(T),Q(T) and T(T), and we give bounds of the total domination number of these new graphs using other parameters in the graph T. We also give the exact value of the total domination number in some of them.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Complementary total domination in graphs
    Chaluvaraju, B.
    Soner, N. D.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2007, 10 (04) : 505 - 516
  • [42] Total domination in inflated graphs
    Henning, Michael A.
    Kazemi, Adel P.
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (1-2) : 164 - 169
  • [43] Total Domination in Partitioned Graphs
    Frendrup, Allan
    Vestergaard, Preben Dahl
    Yeo, Anders
    GRAPHS AND COMBINATORICS, 2009, 25 (02) : 181 - 196
  • [44] Total Domination in Regular Graphs
    Hoppen, Carlos
    Mansan, Giovane
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2019, 346 : 523 - 533
  • [45] TOTAL ROMAN DOMINATION IN GRAPHS
    Ahangar, Hossein Abdollahzadeh
    Henning, Michael A.
    Samodivkin, Vladimir
    Yero, Ismael G.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) : 501 - 517
  • [46] Chromatic total domination in graphs
    Balamurugan, S.
    Anitha, M.
    Eswari, M. Angala
    Kalaiselvi, S.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2019, 22 (05) : 745 - 751
  • [47] Total domination stability in graphs
    Henning, Michael A.
    Krzywkowski, Marcin
    DISCRETE APPLIED MATHEMATICS, 2018, 236 : 246 - 255
  • [48] Girth and Total Domination in Graphs
    Henning, Michael A.
    Yeo, Anders
    GRAPHS AND COMBINATORICS, 2012, 28 (02) : 199 - 214
  • [49] A note on the semitotal domination number of a tree
    Wei, Zhuang
    ARS COMBINATORIA, 2020, 148 : 167 - 181
  • [50] A note on total domination and 2-rainbow domination in graphs
    Furuya, Michitaka
    DISCRETE APPLIED MATHEMATICS, 2015, 184 : 229 - 230